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INTRODUCTION AND OVERVI,EW

Bruce Choppin
Center for the Study of Evaluation, UCLA

The research roject reported here developed out of a growing .

concern at the fragmentation that is occurring within the psychomeyic

field. Dissatisfaction with ihe limitationsinherent in traditional

.forms of mental test ahalysis (as typified by the norm-referenced '

multiple-choice test of achievement), has.led in recent years to a

'variety of new psychometric theories and procedures. The traditional

approach to testing was developed in order to provide ranking of

students 1nd/or tO select relatively small proportions of studenti for

special treatment. In these tasks it was-fairly effective, but it is

in-creasingly seen as inadequate for the broader spectrum of questions

that tducational measurement is now Called upon to address. Novel

P

applications have stimulated new psychometric models and methods, each

/

shaped to deal with the specific problems of the particular

situation. The last two decades'have seen the development of new

types of tests, new scoring methods, new procedures for item analysis,

and entirely new conceptions of the mental measurement process.

A marked characteristic of the professional literature on these

novel approaches to measurement is its parochi/alism. Many of the most

prolific psychometricians display little interest in models other than

their own, and there have been few, and mostly inadequate, attempts to
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integrate theories and results. The proponents of different models

have different objectives; implicitly or explicitly ttiey make

differing assumptions; and they frequently use the' same words and

phrases to mean different things (e.g., relitbility, accuracy,

guessing, error and true-score). Separate methodologies based on

different models have diverged to a point where it is no longer

possible to identify a mainstream approach to educational measurement,

and where informed and balanced-advice on the full range of

alternative.approaches is almost impossible to obtain.

The present project was designed to take advantage'of the wide

, range of interest and experience of different approaChes to

measurement jointly aeld by the professional researchers who

constitute the "methodology group" at CSE. The projpct had,two

related goals. The first was to document in some detail the,

philosophy, assumptions, mathematical procedures, advantages,

limitations, etc. of each'of five different approaches to the

measurement of achievement that currently command considerable

psychometric interest. We have tended to describe these five

approaches as alternative models of achievement measurement, and in

the strict scientific sense this is true, though a comprehensive.

mathematical fdrmulation is easier for some than for others. This

detailed documentation would enable us to clarify our understanding of

the similarities and differences among the models so that we might
t."

explore with real data theitconsequences of 'adopting one analytic

strategy rather than another..



The second purpose,arising from the first, was to develop a much

needed "user's guide" that would set out, fairly and comprehensive,

the rationale Underlying each of the separate approaches and provide

sound.advice to the potential user regarding the selection of _an

approach and how these models may be operationalized.

The-models we consider all belong to the class of latent

structure models in that their analysis is directed to the inferentie

classification of test items and/or persons, based on theoreticai

assumptions concerning the structure of test data and conceptual

theories of measuiTment. Within this framework, the different models

may be seen as attempts at the solution of a variety of measurement

problems. Sometimes, even when the models or procedures apper

similar, the issues of central concern to one may not be of any

particular interest to the other. In the measurement area, we meet

variations in philosophy and value systems as well as in statistical-

referents.

A good example of this can be found in the recent controversy

over latent trait models. Although the Rasch one-parameter model and

the three-parameter model developed by Birnbaum and Lord appear to

have a lot in common (the Rasch model is mathematically a special case

of Lord's model) they are conceptually-quite distinct. Lord began

some thirty years ago with large quantities of item response data

which he wished to understand and explain. For him it was important

to find a model that fitted his data and could make sense of it.

_Today his disciples,view the Rasch model as a model th4 does not fit

their4data well. It is founded on assumpttons nO guessing)

a
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which are often not met in p actice. This group of measurement

specialists rightly disCard the (inexpensive) Rasch model`:in favor of

a more complex analysis that better meets their need to "fit" data.

On the other hand, Rasch was developing his model (during the 1950's),

not on the basis of actual test data, but rather on a series of ,

principles and axioms for measuremen,t systems that he extracted from

- other realms of scientific experience. He did not create his model

primarily to explain existing,data'sets, bi,it rather to form the basis

for constructing new measu-emeht systems. For his followers, test

items must "fit" the model if they are to be useful for measurement.

The goal is to find items that do fit the model so as tozpermit the

construction of test instruments with the optimal properties that

Rasch described.

Unfortunately, many psychometricians in each camp have nott been

able to appreciate the distinction between these two approaches.

There have been public debates during with Item Response Theorists

havecondemned the Rasch. model for not "fitting" real data, while the

Rasch praWtionerslattack Item Response Theory for dealing with

models w tl ose parameters cannot be satisfactorily estimated and which

do not sat .' fy the requirements for "objective measurement". The
4

criticisms are sound in themselves, but they, do not re4te to the

issues that the otherhide holds to be important.

There are other, though perhaps less'dramatic, examples of where

different,priorities and different concerns have led to some breakdown

in communication. For example,,Generalizability Theory is directly

concerned(with meapres and with analyzing the "errors" associated

with them. However, it treats these on a grouped basis as, "error

8
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variance" and makes certain assumptions about their distribution. By

contrast, latent trait theorists use""standard error of measurement"

on an individual basis, finding it to be a more usefula concept than

the conventional one of test reliability. Latent trait theorists also

make assumptions about the distribution of these errors, and in

general thep assumptions are not compatible with those of G-the9ry.

Both approaches are useful for solving specific measurement pr4iems,

but their areas of application are very different. The extent toic

which the two approaches may be regarded as complementary, and may

indeed support-one another, is not well understood.

Our work has addressed these and other questions. We have

brought some illUmination to previously dark and shaddowy areas where

two or more of the models come together.

However, we do not feel that we have yet reached our second

objective of developing a comprehensive and useful guide to practice.

More empirical work in comparing the effects of the dffferent models

needs to be done, and the handbook we wish to develop will contain

more demonstrations using real data than are found in this report.

There has not been time in the last twelve months to carry out as much

of this work aS we would have liked, but we feel that we are on the

right track -and that our work is sufficiently important for its

completion to be given some priority.

The format of the present report is described below. There'are

two introductory chapters. The first analyzes the history of mental

testing to show how conventional item analysis procedures were
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developed (in response to which' pressures and constraints), and how

dissatisfaction with them has led to fragmentation and the range of

distinct conceptual and methodological approadies to-achievement

testing that now exist. The second paper analyzes in depth a central

and continuing problem in mental testing, and one which not merely

illustrates the shortcomings of the traditional approach, but

highlights the differences between tht modern alternatives.

There follow five papers treating each of the selected approaches

individually but according to a standard format.

These "models" are: th S-P Chart Analysis developed by Sato

which may be viewed as a(s lified form of Guttman scaling; two

laterit trait lo istic models (Rasch with one item parameter and Lord

with three item parameters),given separate treatment because of the

philosophical and conceptual contrast cited above; a latent class

model to which the estimation of true scores is central; and

Generalizability Theory which, though somewhat different in scope from

those mentioned earlier, offers a different mathematical mcdel for

test data, and some powerful statistical procedures for interpreting

them.

Following this we present a summary of the empirical work carried

out so far in tesing out different models on common sets of data.

In conclusion; a chapter (available only in outline at the

present) summarizes and synthesizes the earlier parts of the report

and draws some definitive conclusions regarding the applicability of

the various models to different measurement problems.



EDUCATIONAL TESTING AND MEASUREMENT: A BRIEF HISTORY

David McArthur
Center for the Study of Evaluation, UCLA

Educational assessment in the Western tradition has a long but

very irregular history. Seven centuries ago, one English college was

deemed remiss in its responsibilities because its founder had

determined that its recent graduates. "...expressed themselyes very

inaccurately in the leared languages..." (Sylvester, 1970, p.19) the

method of such determina ion was not described. A tradition of oral

examinations was built up over several centuries, only to disintegrate

almost completely by the ttme Isaac Newton attended college ab

1660; not only were there no examinations but frequently the lec urers

themselves simply never showed up fOr classes. Hoviever, in another

hundred years, both Oxford and Cambridge, recognizing the deteriorated .

situation, decided to .impove their curriculum and instituted regular

written examinations in a variety of topics. The exams of this era

were almost exclusively essay questions emphasizing factual recall;

one extant example shows eight questions each in history and

geography, and six in grammar, primarily Latin and Greek. In.the

education of the younger pupils, examinations began to becoA more

4
prevalent as textbooks for the grammar school came to be formulated

into distinct grade levels.

The new sequences of textbooks allowed a more precise grading to

be implemented in schools in various parts of Europe...Within the

school a further step was the deVelopment and application of the

principal of a child's regular progression through grades at

various intervals of about a year (Bower, 1975, p.419).
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The Jesuits, finding that such a procedure' fit perfectly into their

concept of ratio (the systematically-ordered-body of knowledge) took

up the idea with vigor, and it rapidly spread across Europe.

Meanwhile, in China, civil service examinations were already/

several millenia old. The earliest proficiency testing dates from

2200 B.C., and formal procedures for examination date from 1115 B.C.

Despite a concentration on literary rather than managerial skills, the

system was tO be the model for a :lumber of efforts at stanaardizing

competition for,civil service positions in Europe and the"U:S. during

,

the 19th century.. But in China the testing system was abolished in

reforms at the beginning of the 20th century, as Western technologies

and educatiOal orientations intruded into the Orient (DuBois, 1964,

1967).

In the United States, it was not until 1845, following Horace

Mann's advocacy of written examinations, that Vesting was incorporated

into educational practice. The first recorded examination was

administered in Boston that year, and the concept took hold quickly

(Englehart, 1950). Within thirty-five years, promoOon from grade to

grade was no longer made by personal recoMMendation but instead

invariably was judged by success or failure, scored as a percentage,

on a written exam. Mann's viewpoint of testing, while not using the

word "objective,"-carried with it a decided bias-towards objective

,

measurement and standard tests (Ruch, 1929). The earliact objective

- educational tests are found in a book complete with questions, answers

and scales, by an English schoolmaster, dated 1864 (Kelley, 1927).

Objective tests in spelling and arithmetic were in place in the U.S.
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6y the 1870's. Then, in 1881, the superintendent of schools,in

Chicago, expressing a strong sedtiment.savinst testing in particular

(if not against science in general).decreed that advancement of

Students was to be carried out only by direct recommendations of

teachers and principals. Testing for purposes of grade-level

'advancement was prohibited. His viewpoint was widely shared;

suddenly, the impetus for "objective" measurement and as4sment was

on the wane. "Ex-minationkPfor.grade yromotions were gradually

abolished in all the best schools," claimed the superintendent's

successor. "The person.best qualified to judge of a child's ability

to go on is his teacher...To say that any other test is necessary is a

travesty on common sense" (Bright, 1895, pp.274-275). By the end of

the nineteenth cnetury, educational tsting had achieved a bad name.

jeachers were "teaching on the test," devoting weeks of prepration

and drill to extant editions of upcoming exams, and the public was-not

pleased.

A completely separate thread in the fabric of educationa3

measurement is found,in a review of the history of statistics. The

firstslectures in statistics date eround 1660; the first use of the

word "statistic" is placed at 1749, in reference to the accounting of

all the things that Make up akingdom (Meitzen, 1891). While

extenive developMents in mathematict were being made during this time

(Newton, for eXamplewas solving problems in-differential calculus by

1676), the setting out of facts and figures in the sociat-stteoces for

many years was limited to tabulations of various facts, actuarial

tables, and census taking, the first abOut 1769 in Denmark.
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Interestingly, some recognition of the importance of understanding

individual differences in mental abilities is found'in the field of

astronomy by 1822' (Freeman, 1926). It wa's not until this.century that

the word "statistics" came to refer exclusively to quantitati-ve

approacHtfs; its origins apparently are,tied to the Germanic di4eip1ine

called "Staatenkunde" or study of'governments and politics. The

profession suffered a decline as the old teachers passed away, and the

task of statistics was made increasingly narrow.

In 1806 and 1807 a passionate controversy arose against the
brainless bungling of the number statisticians, the slaves of the.,
tables, the skeleton-makers of stztistics...The opponents in the
sharp attack were themselves, however, riot sufficiently clear how
'new and precise limits for their science should be determined.

(Meitzen, 1891, pp.49-50).

An International Statistical Congress.was formed to attempt to resolve ,

the confusion; it met first in 1853 and showed a surprising,degree of

success. Even though its members chose to stay out of issuei of

statistical theory, in 1869 one of their retolutions,declared:

...that in all statistical researches it is important toAnow the
number of observations.; the gmalitative value is to be
measured by the divergences'of the numbers among themselves as

well as the average.; it is desirable to calculate...the

average deviations (Meitzen, 1891, p.80).

These principles formed the basis for techrrital developments tn

educational statistics into the twentieth century: one of the first

7textS (Rugg, 1917) devoted most of its'efforts to tabulation,

averages, frequencies and variabilities. Despite several pioneering

studies in educational attainment, in large measure the collection and

analysis of data at this time was confinecito tabulations of school

attendance and costs. The statistical societieS-of the day were deeply

embroiled in sactal problems,,especially the relations of education to
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crime, and spent no time at all'oo assessing educational achievement

beyond such indices as tne ability to sign one's own name (Cullen,

1975).

By the middle of the nineteenth century, considerable progress

had been made in the analysis of experimental data from agricultural

research. 'Good experimental designs, including factorial and

split-plot techniques, were in place about 1850. Galton spent time

investig\ating how mathematical solutions might best be developed for

data from studies of Charles Darwin, building a number of statistical

tools in the process, and was the first to a tempt measuring

characteristics of individual intelligence (18gII: But it was not

until Pearson's chi-square test (1900), and Student's t-test (1908)

that appropriate quantification of educational data could be

developed, although the latter, surprisingly, took a number of years

to catch on (Cochran, 1976). Fisher's analysis of variance (1924)

drewlleavily on these preclirsors but it too was relatively slow in

being incorporated into the repertoire of educational statisticians.

Guilford's text on fundamental statistics in 1942 awards analysis of

variance fewer than nine pages, embedded in a chapter on reliability.

In 1890 appeared the first study of reliability (Edgeworth,

1890). In the same year_the seminal short article by Cattelil (1890)

marked the first time the words "mental tests" were used together.

Following Galton's lead, several investigators in Germany began to

develop mental tests, and in the U.S. there was extensive interest in

the relationship of mental capacities to physical characteristics.

The American Psychological Ass'ociation set up a standing committee in



-,1.6

1895 to consider cooperative efforts in mental and physical

statistics;.the American Association for the Advancement of Science

did likewise the following year.- Binet, who had been working on

problems in mental reasdning since 1886, wrote an important article in

1898 on the utility of measurement and scaling in the appraisal of

human intelligence. However, two major studies of testing around this

time.(Sharp, 1899; Wissler, 1901) concluded that many of the available

tests used for psychological research fell far short of their claims,

in both content and method (Peterson, 1925). In education, Rice's

(1897) study of spelling attainment, using a single list of 50 words

in a test administered to 30,000 children, was a pioneering study,

1

which circulated widely but gained few supporters (Wilds & Lottich.,

1970).

About the turn of the century there was a fair degree of public

discouragement about educational testing. However, about'this time,

the first survey of school facilities anckducationa1 practice was

conducted, the College Entrnce Examination oard was established, and
P

in 1902 the fiirst course in educational measuremeot/Was taught, (by

Thorndike at Columbia) (Meyer, 1965). Concurrently, i.nterestlin the

concept of general intelligence was being pursued by a number" of(

investigators, following a suggestion by Galton in 1883 ancra study of

1,500 children conducted in 1891 (Burt, 1909): In the anals'is of

results from the latter investigation, however, came thek e;plicit

realization that statistical methods for educational measurement were

ih desperate need of thoughtful improvement. Burt specUiated thatthe

consistent failures of research investigations in the area of general

intelligence before the turn of the century
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were largely due to their reliance' for discovery of correlations

upon mere inspections of the'data they obtained, instead of upon

quantitative determination.and mathematical deduction (pp.94-95).

During the first decade of the twentieth century, the growing impetus

for increased statistical rigor could be felt in severgl areas;

measurement successes in anthropometry and biology prOvided much

needed support for such improvement. In 1904, Toulouse and Pieron's

7
twvOlume manuallon laboratory exp riments included sections on

intelligence and the measurement of1 individual 'differences. In 1906
....-

the American Psychological Assocition created a permanent cOmmittee

charged with evaluating requirements for standard laboratory technique

and appraising both group and individual tests with attention to

practical applications. Binet's test for intelligence (1905) and

Thorndike's book on mental measurement (1904) had'particular

significance during.this time, as did Spearman's (1904) paper on

general intelligence. By 1910,.a vast number of tests in skills like

English, spelling, handwriting, reading and arithmetic had emerged,

followed closely by more technical articles on topics like numerical

analysis, standardization, validity and correlations.

...American educators quickly realized that the scale idea could

be applied not only to intelligence but to achievement as well.

There followed a phenomenally creative period during which

testmakers developed instruments for viltually every aspect of

educational practice (Cremin, 1961, p. 186).

In 1913, the National Council of Education released a major

report on standards and tests for measuring-school efficiency, and

expressed this sentiment:

We are only begining to have measurement undertaken in terms of

standards or units whih are, or'may become, commonly

recognized. Such standards,will undoubtedly be developed by

means of applying scientifically derived scales of measurement to

many systems of schools. From such measurements it will be

possible to describe accurately the accomplishment of children

and to derive a series of standards...(Strayer, 1913, p.4).



Graves, reviewing the condition of education in 1913, expressed the

sentiment that the application of mathematics to measurements in

education was one of the most significant movements.of that time.

Developments in objective.measurement of intelligence and

educational achievement came to a head with the crisis of the Great

Work in Germany on the screening,of inductees had been in

progress since 1905; Binet and Simon (1910) discUssed the application

,

\

of intelligence testing in the Freni army (Peterson, 1725). In the
ta

U., Terman's revision of the Binet scale was completebt by 1917, and

was applied soon thereafter to the testing of 1.7 million recruiits. A

small team of educational psychologists produced the A7my AIpqa and

ieta tests of intelligence between May 28 and June 10, 1917; a copy of.'

the examiner's manual was enroute to the printer within a month.

Immediately after the war, as the Army'was selltflg thobsands of unused

,test blanks, both educational specialists and the public began to

realize that objective test results had to be t+n.with some degree

of caution. One of the originators of the Army Alpha expressed the

sentiment unambiguously: "We do not know whayntelligence is and it .

is doubtful if we will ever know what knowledge is" (Goddard, 1922,

quoted in Spring, 1972, p.5). Even so,) by 1920, objective testing

formed the core of educational assessment methods. The Journal of4

Educational Measurement devoted several issues in 1921 to a symposium

on scientific measurement of intelligence.

During the decade that followed, the objective assessment of

intelligence "swept America, and to a lesser extent Canada, like an

educatiOnal crusade.,.The critics were numerous but few in comparison
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, to the advocates..."(Marks, 1976, p.10)., McCall's (1922) book On

educational measurement and.Monroe's (1923) the following year were,

the first to set out the procedures for a "new type examination," the

multiple-choice and true-false tests. PrinCiples of test construction

began to earn chaPters of their owy and the variety of

interpretations and uses of tests was becoming a major consigeratton

formany educators (Monroe, 1945). Then came the first contributions

to What is now recognized as classical test theory: Thurstone's
\.

(1925, 1926, 1927) articles on the scoring of individual performanc

Ruch and DeGraff's (1926) study of cori.ections for guessing, Ruch's

(1929) The, Objective or New,Type Examination, and Thurstone's Tne

Relia.biifty and Validity of Tests, 1931. 9

The concept of reliability is illustrative of the historical

development of educational measurement. Because of its basis in

correlational method, whiCh was already well advanced at the turn of

the century, a number of technical articles appeared quite early

concerning the statistical nature of reliability indices. By the time

that a major study was launsped in the late 1920's by the American

Historical Association's Commission on the Social'Studies Into the

nature of testing in social sciences edu ation, reliabi.lity measures

V

mere regarded as essential by technical pecialists but generally

'disrebaNed by practitioners. Under the counsel of Truman Kelley, a

large-scale investigation was conducted on the ue of tests for

determining.overall class and school'pe-rformance,\recognizing

individual skill levels and individual differences, and-appraising

attitudes and personality traits. It also Studied the utility of the



"new-type" tests. In the long run both the social science specialists

and the educational measurement technicians were disappointed in the

results of the study. The former were not pleased by.the tendency of

short-answer and multiple-choice tests towards fragmentary

.
presentaion of, and limitations to, simple facts in the curriculum

a

and the deletion of shades of-meaning. The latter felt that lack of

objective terms, which they saw as essential for objective

measurement, obviated the study's conclusions. Kelley's feelings were

sufficiently strong that he wrote a 15-page appendix entitled "A

Divergent Opinion as to the Function of Tests and Testing" in which he

excoriated the opponents of testing with more than a dozen carefully

reasoned arguments regarding the appropriate scientific use of

educat.ional tests, plus bne or two direct strikes to the more

emotional nature of the argument:

The opponents (of testing) show,no awareness of the tests of

reliability and validity of measuring instruments, either

judgments of teachers or of test scores. Ue believe that such

awareness is essential to any educator who is content to work

in the dark (p. 489).
T)

In thie areas of reliability and validity, technical proofs were

available as early as 1910 (Spearman, 1910) providing a rationale

behind error measurement and Brown (1910) giving a definition of true

score. But it was some time beforeeither term was given seriOus

treatment in the standard texts. Taking a repregentative contribution

\ from each decade, we find a half-dozen index entries in Rugg's 1917

text, 18 entries between the two in Ruch's 1929 text, four chapters in

his 1942 book, and eight full chapters devoted to the two topics in

Oulliksen's 1950 text. However, by the 1930's there had accumulated a

2 u



variety of estimation procedures and a great deal of confusion of

terms (Adams, 1936; Barthelmess, 1931; Lincoln, 1932). An attempt to

resolve the issues was made in Thurstone's mall book on the topic in

1931, another in Kuder and Richardson's (1937) key article in test

reliability, followed by Guttman's (1945) reformulation and Cronbach's

(1947) discuSion of the several' different kinds of reliability

coeffi'cients. The American Psychological Association tried to resolve

the various1discrepancies by comMittee id 1954. Tryon (1957) provided

an extensive historical review of the reliability concept and a

domain-sampling reformulation. "The exjtraordinarily massive

literature in this topic," wrote Cattell (1964), "...has never lacked

statistical finesse and mathematqal virtuosity (p.1)", but he, too,

felt a need to suggest substantial redefinitions for both reliability

and validity, which in turn were ignored four years later with

pUblication of a definitive mathematical analysis by Lord a'nI Novick

(1968).

The first formulations of a 'sample-free' approach to 'mental

measurement are found in Lawleyl. (1943) analysis of item selection.

Although the problem had been explored tangentially by Horst (1936)

and more recently by Ferguson (1942), his paper was among the earliest

to seek mathematically.rigorous justifications for the selection of

maximally discriminating test items, and to examine in some detail the

concept of item characteristic curves. Tucker (1946) provided further

statistical support. Gulliksen (1950) summarized the early work in

true score theory, and Lord explored the application of latent trait

theory to test theory,with his doctoral disertation, published as



Theory of Test Scores (1952). Interestingly, he felt that the actual

uti-lity of large portions of the theory/would be limited in practice

by the difficulty in obtaining sufficintly large data sets, and did

not publish about the problem again fOr another ten years. At that

point he presented an important deveiopment, the beta-binomial model

of the frequency distribution of trpe scores and raw scores (Keats &

Lord, 1962), and further refined tite definition of true scores in Lord

& Novick (1968): Meanwhile, Birdiaum explored certain statistical

properties of normal and logisti, characteristic functions in 1957 and

1958, but few other papers on this topic appeared until the 1960's.

The sentiment has been expressed more thah once that the science

of edugational ;testing has progressed,fitfully. Despite a plethora of

statistical developments, "most of the major theoretical and technical

distinctions and most of the principle points of dispute were in

existenceby 1925" (Thomson & Sharp, 1983). This includes such

diverse topics as iteM analysis, test bias, the nature vs. nurture

arguments regarding individual intelligence, and.at least the

beginnings of factor structure explanations for educational

assessment.
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TOWARDS MORE SENSIBLE ACHIEVEMENT

MEASUREMENT: A VIEy.AND REVIEW

,

Kenneth A. SirOtnik.
Center for the Study of Evaluation, UCLA

Introdaction

Much of what will follow here Is a repeat'of an unfamiltar--or'at

least unpopular--theme. The essence of this theme has been either impli-

cit or explicit in writings dating as far back as the early 1930's and

continuing up to the present. (See, for example, Walker, 1931; Guttman,

1944; Loevinger, 1947, 1948, 1954; Rasch, 1960; Lumsden, 1961; Bentler,

1971; and Wright and Stone, 1979.) Probably the most entertaining and

insightful review is -a rarely quoted article by Lumsden (1976).- These

authors all propose different techniques (or variants of the same techniques)

and analytic models for scaling the items on the ordinary test of achieve-

ment. But they all have two basic things in comon: (1), they are critical

of, and represent alternaiives to, classical test theory and (2) they op-

erate from fundamentally the same notion of what it means to measure. The

essence of the common theme is-;-blyntly, that classical (and classical-like)

test theories are not very useful when it comes to test construction and

analysis.

Why has not the nearly exclusive practice of traditional
1

test theory

methods abated during the last fifty years? Why does nearly every new issue

of journals like Psychometrika or Educational and Psychological Measurement

contain yet another t6eoretica1 exposition involving true and error score

theory or some esoteric reformulation of the same old reliability coefficient?

Were the above authors and others like them just on a flight of fancy pro-

4.
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posing crazy ideas that happened to escape the eyes of critical reviewers?

No! They merely challenged what to date2 amounts to over 70 years' worth

of archives of scholarly work-on test theory models bearing little resemblance

to how people ordinarily think about what it really means to measure. To

be sure; each challenge did not offer a completely viable alternative to

common practice,. But it seems to be part of the human condition to haflg on

tenacioUsly to the familiar, to the security of a large investment, at least

until the market crashes and/or the tide of opinion noticeably changes

through the power of advertisement.

Such n4as been the case recently with the increased use of latent trait

models, particularly the model proposed by Rasch (1960) and popularized in

the U. S. by Wright (1968, 1969 [with Panchapakeson], 1977, and 1979 [with

Stone]). The point of this repOrt is not, however, tO advertise any par-
,

ticular measurement model. Rather, I wish to continue advertising the

self-evjdent notion that how one conceptualizes the act of measurement

should have a lot to do with how one analyses the quality of the measure-

ment act durin its develo ment, im.lementation and revision hases.

I will restrict this discussion, to the measurement of achievement

with items of the usual correct-incorrect (1-0) variety. (However, the

basic notions are generalizable to ordered response scales more typical in

the measurement of values, attitudes, beliefs, opinions, etc.) My point

off.i.fiew regarding how the measurement act is ordinarily concept-alized is not

original nor very creative. It rests simply on analogy with measurement

in the physical sciences where constructs are often experienced with the

senses. The measurement of length, in particular, a person's height, is

:the usual example and will serve well here. Certainly most constructs we

attempt to measure in the behavioral sciences are not directly experienced
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and this, of course, constitutes the main source of difficulty. But it

does not follow, necessarily , that the generic notions of measurement be

any different. Nor does it follow that measurement models be deterministic,

i.e., be developed in ideal terms from which deviations are.unaccounted

for. Probabilistic models are those wherein all deviations from the model

have an expected probability of oCcurance. Both deterministic and prob-
.

abilistic models exist in both the physical and behavioral sciences.

Implicit in this view of measurement is an assumption that the test

items are all measuring the same thing (construct, trait, etc.). Extant

psychometric literature is replete with confusion over what exactly is

ineant by this assumption and the two commonly used terms -- unidimensional

and homogeneouF -- referencing sometimes similar and sometimes dissimilar
f,

empirical interpretations of this assumption. The confusion, not surpris-

ingly, reduces down to different view of the measurement act. Viewed in

its original factor analytic sense, unidimensionality refers to one inter-

pretable common factor explaining the item 6g-re1ation matrix. This fits

well with the notion of measurement as repeated single-item tests and the

concept of reliability as internal consistency. But internal consistency

,\

is only a necessary and not a sufficient condition for &single common

factor,in an item set; yet, many traditional test theorists (e.g., Gulliksen,

1950; Ghisyi, 1964; Magnusson, 1966; and Allen,and Yen, 1979) and prac-,,

titioners have used both unidfinensionality and homogeneity in reference

to the internal consistency of a set of items.
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To confuse the issue further, Guttman's (1944) "unidimensionality"

and Loevinger's (1947) "homogeneity" both, in empirical consequence, refer

to the cumulative ordering or scaling of a set of items -- a fundamentally

different notion of the use of items to measure a single construct. The

analogue of this notion for probabilistic models (e.g., latent class and

latent trait models) is the concept of local independence, taken by many

latent trait theorists (e.g., Lord & Novick, 1968: Hambleton & Cook, 1977;

and Lord, 1980) as the equivalent of the assumrttion of unidimensionality

(But see the discussion of Traub and Wolfe, 1981, p. 387.)

From lily point of view, I assume that there existtufficiently^

singular achievement constructs, represented by itlm sets, that are

psychologically interpretable and that are of potential instruttional

use. A reaso6/ably successful application of a measurement strategy is

necessary but not suffitient evidence for a reasonably successful effort

at measuring a singular construct. In other words, a singular construct

is'assumed at the outset; a priori verification of the assumption, is,

in essence, an exercise in content validity; necessary a posteriori evidence

lies, in .essence, in the degree of success in developing the measurement

device; sufficient evidence, however, is accumulated only through further

construct validation studies.

In what follows, a common conceptual view of the act of measurement

will be presented and contrasted, in general, with the act as implied by

traditional test theories. This discussion will then be punctuated by a ,

more specific overview Of several traditional test theories to illustrate

the issue further. Finally, afternative models will be reviewed which

are more in line with how the measurement actis ordinarily conceived.
3
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Precision and Ac.curacy: Disentangling the Concepts

Measurement and Dependability
4

It is important, first, to define measurement more explicity. Many

definitions have been proposed reiulting in disputes over whatjioes and

does, not constitute measurement. My interest is not to debate the

issue at a philosophical level, but rather to simply clarify how the

term will be used, here. It will serve my purposes well by following

the lead of Torgerson (1958) who reserves the use of the term measure-

T7

ment as follows:

The logic 6I measurement deals with the conditions necessary
far the construdtion of a scale or measuring device. Measure-

ment as used here refers to the process by which the yardstick
is developed, and not to its use once it has been established,
in, say, determining the length of a desk. It is essential

that we keep this distinction in mind. The use of-the estab-

lihed yardstick fri "making a measurement".is a rather simple
procedure involving merely the comparison of the quantity to
be measured with standard series, or perhaps only reading the
pointer or counter of an instrument designed for the purpose.
We are here concerned with the more basic problem of estab-
lishing alsuitable scale of measurement.

....measurement pertains to properties of objects, and not to

the objects themselves. Thus, a stick i5 not measurable in our

use of the term although its length, weight, diameter, and

hardness might, well be.

Measurement of a property then involves the assignment of numbers

to systems to represent that property. In order to represent

the property, an itomorphism, i.e., a one-to-one relationship

must obtain between certain characteristics of the number system

involved and the relations between various quantities (instances)

of the property to-be measured.

The essence of the procedure is the assignment of numbers in

such a way as to reflect this one-to-one correspondence between

these characteristics of the niiiibçrs and the corresponding re-

lations between 'the quantities. pp. 14-15)

Implicit in this usage is the preference not to use the term measure-

ment ip the broader sense of Stevens' classic defjnition: "Measurement is

the assignment of numerals to objects or events according to rules."
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(Stevens,.1951, p. 22.) Nominal scales, therefore, are not the result of°

measurementbut of classification. Measurement presupposes, therefore,

that the object has a property that exists in magnitudes that can be

represented on either ordinal, interval or ratio scales. And again I

align Myself with Torgerllt who finds it uninteresting to worry about

what is or is not "permissable," in pactice, with measurement scales

of these teveral types:

.....a Major share of the results of the field of mental testing

and.of the quantitative assessment of personality traits nas

when curves,are fitted by the process of least sq ares or when
depended upon measurement by fiat. This is. for example,

Ooduct-moment.correlations, means, or standard deviations are

computed. All of these presuppose that distance has meaning.

Hence:,.either explicitly or implicitly, the experimenter is

measurfElLthe attribute on an interval scale whose order and
distance charactertstics have'Obtained meaning-initially through

definition alone.

The discovery of stable relationships among variables so measured

can be as important as among variables measured-in other ways.

Indeed; it really makes Tittle difference whether [a] scale of
length,.for example, had been obtained originally through ar-

bitrary definition, through a relation with other established

variables, or through a fundamental pr&Eess. The con6ept is

a good one.::It has entered into an immense number of simple

relations 4ath.qther variables. And this is, after all, the

_major crited*oftthe value of a concept. (p. 24)
.

The "act" of measUrement, then, refers generally to both the logic

of measurement and"the process of conStructing a test, i.e., a rule or

set of procedures' oPerationalizing the construct in a manner consistent

with the logic of measurement. What, then, is a test theory? I would

prefer that the.phrase'test 'theory" denote the complete act of not only

constructing the measuring instrument, but also of assessing further the

A

3 ')



validity of that instrument\including its dependability4 under specified

conditions- of use. In other words a theory of testing, to be complete,

must include a measurement.model, a dependability model and a validity

theory. This last ingredient really fncludes (and goes beyond) the mea-

:surement and dependability mod what justifies the usage of the

term "theory." I know of ne past or current "test theory" that deals ex-

plicitly with all three aspec . Traditional test theories are theories of

dependability (some more restricted than others) with some validity theory.

The newer latent traitmodels are just that, models for measuring,a

presumed construct. The focus of this paper is clearly on measurement, .

but by way of contrasting the act of measurement with the dependability

ofjbtained measures.

Now suppose we had before us a small collection of the usual multiple-

choice (or' true false, completion, etc.) items of the type commonly found

on a test designed to Measure a specific achievement outcome. On their

face; all such tests "look alike." However, depending upon the conceptual

model of measurement underlying the analytical process for selecting these

items, this innocent looking collection could be quite different in terms

of item composition and empirical characteristics. It is the contention

here that classical theory is conspicuously lacking in explicit regard

for the potential value of the individual item. By this I mean that there

is no explicit recognition of the measurement function served by items.

Cldsiccil true and error models characterize the rrwmpnlience of applying

a measurement rule--they do not characterize the essence of the ruje itself.
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Let's Clonsider the "essence of a measurement rule" by continuing the'

analogy with measuring a person's height. In measuring height, a tape

measure and its properties operationalize the rule. Instead of "tape mea-

sure," let's use the simpler term"ruler." Suppose we us,e a ruler (of

sufficient length) to measure peoples' heights. Traditional test

theories have a lot to say about what to do with the obtained measurement; they

havelittle to say, however, about how the ruler is constructed in order to ob-
..

tain the measure, i.e., how the ruler is calibrated and .how a numerical result

eventually becomes associated with each person as a quantitative indicant

of the height of the person. In other words, rather tban the 4uestion of

precision with which any given measurement is obtained, traditional test

theories take the measurements as given and pursue the quystion of accuracy,

i.e., how consistent the measurement rule is over repeated applications.

Precision and accuracy are cornerstone concepts of any theory of

approximate numbers. They reflect.fundamentally different ideas in the

measurent Process. Yet they are used inter-changeably inthe bOavibral

sciences as a synonym for rel'iability. Two examples out of many are the

following quotes:
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e..

The physical scientist generally has expressed the
accuracy of his observations in terms of the varia-

tion of repeated observations.of the same event. The

mean of the squared deviations of these observations
about the obtained mean is the "error variance." This

is a measure of precision or reliability....We regard
reliability as the consistency of repeated measure-

ments of the same event by the same process....
(Cronbach, 1947, p. 1.)

Reliability of measurement, then, pertains to the pre-
cision with which some trait is Oeasured by,means of

specified 60-Orations....Such indices will be Lieful
for comparinb_different tests so we can ascertain
which gives us the most precise or stable scores,
anii will permit us to ascertain whether the relia-
bility with which A test measures is sufficient for

our purposes....Casting reliabfliWin terms of the
coefficient of correlation between parallel tests pro-
vides another way of describing the precision of

measurement. (Ghiselli, 194, pp. 215-218,.)

In.the'physical sciences, the concepts of precision and accuracy

are clearly distinguished although not always in the same way. In the

absence of empirical error, a measurernent m precise to the nearest

th
u unit has art inherent absolute error equal to ±u/2 . In this case,

faccuracy become relative error due to imprecision, i.e., (u/2)/m. But

when empirica, i error exists--that is, error due to the measurer, the

measuree, and/or the measurement circumstances--accuracy (not precision)
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is usually defined as in the first sentence of Cronbach's (1947) quote

above. The d' tionary is of little help in sorting out any systematic

distinctions. For example, Webster's New World Dictionary (College Edi-

tion) gives us this Aefinition: "Precision, the quality of being precise;

exactness; accuracy." And in the same dictionary, is this definition:

"Accuracy,.the quallty of being accurate or exact;'precision."

At the risk of confusing the issues further, I will elect the versions

of these two concepts that serve to.keep two fundamental properties of the

measurement act separable. Suppose in measuring the height of a persop,

the ruler is marked off in feet; we can then meastrre anybody's height o

the nearest foot. This is a statement of precision. Included-in this

tion of precision is the overall length of the ruler. If it is only 5ifeet

long, the measurement of people 'ver 5 feet tall would necessarily be much

less precise. Precision /is intrinsic in the construction of the measur-

ing instrument; it can be increased by concpptualizing and adaing more hash

marks to the ruler. Half feet can be added to the ruler enabling the measure-

ment of height to be precise to the nearest half foot. It is not really

necessary that the hash marks be at equal intervals, or that the addition

of hash marks be midpoWs of each interval.

Possibly a better conceptualization o precision .4 gained by defining it

as the number of measurement decisions an instrument can potentially make.

The ruler calibrated in half,feet can potentially make tWice the number of

relative height decisions as can the ruler calibrated in feet.

To facilitate the analogy with test items, the ruler can be reconcep-

tualized as a collection of straight sticks consisting of a 1-foot stick,

a 2-foot stick, a 3-foot stick, and so on. The more precise ruler is re-



conceptualized dis a set consisting of a 1-footstick, a 11/2-foet stick,

a 2-foot stick, a 21/2-foot stick, etc.. Measurement of height, then, if

the process of isolating two adjacent (ordinality being assumed) stick's

within which lies the height in quesfion and juhing which of these sticks

is closest, i.e., to within u/2 units where u is the unit of precision.

Alternatively, the measure of a person's height is the number of siiOs

surpassed by the person's height (plus u/2). If the person is judged to

be shorter (by u/2 or more) than the stick, he/she is scored zero; if

taller, he/she is scored one. The persOn's height is then the ibtal score

after being tested on the set of sticks. Figure 1 lays out the process

schematically. Whethet sticks are ordered as calibration marks oh a ruler

or unordered and used summatively, the result is the same: the person's

height is judged to be 3 feet to the nearest foot. That is, the person's

height is somewhere in the theoretical interval of 21/2 to 31/2 feet. Preci-

sion is inherent in the way in which the measuring instrument is calibrated

id made operational.

Accuracy is reserved here as a term for describing the degree to which

,the use of the measuring instrument is error-free. Accuracy is an em-

pirical concept given an already c'alibtpted instrument. Indexing the level

of accuracy involves repeated measurements under the circumstances in which

accuracy is required. In the above example, to the extent that we can con-

sistently arriye at (or close to) the same meaSurement of height (to the

nearest foot Or half-foot depending upon which ruler we use), we have an

accurate measuring procedure. The more accurate the procedure the less

variability in obtainedMeasurements over tepeated measurement trials.

3,8
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Figure 1

Schematic Representation of the
Act of Measurement

(Height as an Example)

Ordered Sticks:

Calibrations: 1

Unordered Sticks:

4 5

4'

2'

3'

5'

Scores: 0

c.

1 0 1 Total =0")



The complete independence of the conceptt' of precision and accuracy

should,be clear: A highly precise instrument can be grossly inaccurate

(a rubber measuring stick calibrated to the 32nd of an inch) compared

to the acCuracy of a less precise instrument (a steel measuring stick

calibrated \-"0 yards). Moreover, accuracy is a function not only of insi.ru-

ment "decay," but also of the circumstances under which it is used. Tech-

nically, therefore, we/assess the accuracy of the measurement prOcedure

which includes.error due to the instrument itself, the person doing the'

measurement, the person being measured, and the environment in Which the

measurement process takes Place.

Given this distinction, reliability (or, more generally, dependability)

as defined by.classical (and classical-like) test theory models is clearly

a synonym for the accuracy of a test: Empirically and theoretically:the con-

cepts of reliability and dependability have been concepts of repeated measure-

ments. In this sense, it mattem little whether the repeated measurements

are replicates (strictly parallel) or samples from a domain (randomly parallel);

that is, the generic concept of accuracy remains.intact regardless of the

conceptu4l changes in meaning of "true score" implied by the several classical

models. So long as we envision only the composite result of the testing pro-

cess, the classicaTilodels are quite analogous to the physical model of mea,

surement. The test score is analogous to the "ruler score," i.e., the obtained

height measurement. If we are interested in assessing the accuracy of a single

ruler, then we could use the original classical test U'eory model of strictly

parallel repeated measurements. If, instead, we are more interested in the

accuracy of a v\ariety of rulers (wood, steel, cloth, etc.) from different

manufacturers, then,,the item sampling models of randomly parallel' repeated



measurements. would be useful. *The domain of generalizability changes,

but the notion of accuracy does not--empirical estimates obtain through

repeated measurements, either with the same ruler (strict parallelism)

or with a sample of rulers (random parallelism).

However, the physical modeland traditional testtheory-models part

company ihen it comes to the notion of internal consistency. Inquiry

into-the internal consistency of 4.ruler would be directed at the verifi-

ction,of the.calibrations via ris the construct in question and the' .

se1e5.ted measurement unit standard--an investigation of the precision of

measurement. In test theory, the inquiry is directed, as it s'hould be,

toward the items. But in traditional theories, the inquiry proceeds by

simply recasting items into the same rol as the test, viz., repeated

measurements--an investigation of the accia'acy of measurement.

Where in the traditionaTtesttheory models is the concept of preci-

sion? Conceptually speaking, the answer is-, "Nowhere." Now of course

precision is manifested inthe-test item, in particular, the difficblty
5

of thetestifèm. A student.passing a more difficult test item evidences
4

more ability than does a student who can pass only a less difficult item.

The analogy with Figure 1 should be clear. The collection of items is

the ruler, conceptualized as an oi-dered bundle of sticks. The item diffi-

tulties are analogous to the lengths of, the sticks. Measuring the ability

of a student involves locating that pair.of adjacent items B and A such'

that the studenf correctly answers B (and all other items easier than B)

bOt not A (nor all other items more difficult than A). Traditionally, the

student's measure is the ordinal positionof item B, or, equivalently, the



total number of iteA.answered correctly by the student.

Certainly this analogy is lacking in some non-trivial respects. In

particular, the determinacy in the ordering of sticks is riwrdly (if ever)

realized in the ordering of items. If stick C is shorter than ftick B,

and a student's height surpas'ses the length of stick B, then\it will'surely

pass that of stick C. Such is' the beauty of measuring constructs we can

understand with our senses. But if item C it easier than item B, and a'

student correctly answers item B, then it is not always a sure bet that

he/she will correctly answer item C as well.6 Such is the legacy of the

attempt tp measbre abstract behavioral constructs. Moreover, the proce-

dure for assigning an invariant metric to the measurement of height is

straightforward.g.jt is much less so when using items to measure ability.

But I believe these to be minor details compared to the conceptual

identity between sticks and items and their role as calibrations

on the "ruler." The pqint to be made here is that this is not the role

cast for items by classical (or classical-like) test theories. Lest I

may have begun to lose some,readers who are rusty on classical (and what

I am referring to as cla;sical-like) test theory, I will turn to an over-

view of several such theories wi-th=-the expressed intent of further illus-

trating the argument thus far prfsented. (Readers already familiar with

these models may skip to the Dis6ussion in the next section with little

or no loss in continuity.)

Traditidnal Test Theories

Some would probably argue (and justifiably so) that the sampling of

alternative approaches to follow should not be lumpcd into a single clast

of test theories, especially one including classical test theory. I do
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this here only because, in terms bf their fundamental conceptualization

of the measurement process and important empirical conseyences, they are

more siMilar to each other than to the models to be discusseL next.

Classical Test Theory

The basic postulate of classical test theory defines a belief regard-

ing the composition of the raw score obtained by a student '
namely, that4

this observed score is simply the student's true score plus what's left

over, commonly desigpated as the error score.

Using some fairly standard potation and.the usual matriX'layout of

the scores of n students\on k items, we obtain the schematic in Figure 2.

Using T and E for true and error scores, the classical test theory model

posits for any student s that:

X
s

= T +
(1)

A number of relationships obtain 'f.t..c5m this model when several additional

assumptions are made about the true and error score comporrts of repeated

measurements on any student,7 Specifically, these assumptions are (a)

errors are totally random and cancel each'other out; therefore, the mean

error is zero Of= 0); (b) the correlation between true and error score

components is zero (PTE 0);- and (6) the cOrrelation between errors

over repeated measurements is zero (PEE'
°).

Assumption (b)'lePds directly to the variance composition of

the linear model above, viz., observed score variability is the sum of

variability in true and error scores:

2 2 2
aX = aT t aE

43
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Figure 2'

Student-by-item raw score matrix and notation., . = 1 or 0

if student s answers item i correctly or incorrectly.)

Items

1 /2 3 . i

Raw Composite
Scores

Item Difficulties
7

pi L xsiPn
s=1

X
2

X
3

X =

i=xsis
1

X
n



Assumption (c) leads further to the fundamental theorem that the covariance

between observed scores'on-any two repeated measurements is equal to that

between the true scores on these measurements:

PXX' aX aXI PTT' aT a11
(3)

e
Finally, if a fourth assumption is added--(d) the repeated measure-

..

ments are kralle measurements where parallel measurements are defined as,

haVing equal true scoret (T = T ) and equal error. variances (4 = 41--

then reliability (defined as the correlation between parallel measures, PXX' =

PXX) is the equivalent of the ratio of true score to observed score vari-

ance:

2
a
T

PXX 2
o
X

(4)

But this is also the coefficient of determination in predictin6 observed

scores from true scores (or vice versa), i.e., the correlation between

parallel measurements is equivalent to the square of that between observed

and true score components:

2

PXX PXT
(5)

A little bit of algebraic manipulation of equations (2) and (4) gives us

an equation for the error variance in terms of reliability and observed

score variance. In standard deviation terms, this equation is

aE = a
X XX

(6)
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and is commonly referred to as the standard error of measurement. Noting

again the relationship in (5), this equation also represents the standard

error of estimate in predicting X from T:

crE X

A 2

° PXT
(7)

So much for theory. In practice we have only what we observe--raw

-2
scoreS X and the variance of these scores s- which we uSe as an estimate

),c

of a
2

In view of the above theoretical relationships, if we can,also
X

estimate pxx, then estimates for the remaining parameters can be automa-

tically computed. The estimate of reliability (denoted 50( ) is usually

obtained in one or more of three fundamentally different ways with atten-

dant differences in empirical interpretation.

Reliability as Stability. This is the test-retest formulation of re-

liability as the correlation between two administrations of the same test

over a specified interval of time. If the time nterval is too long and

allows for true individual changes in the construct being measured, then

the test-retest correlation has little to do with reliability. But if the

time interval is well-defined in relation to the expected consistency in

individual true scores over that period of time, then the test-retest cor-

relation estimates the stability form of test reliability.

Reliability as Equivalence. 'This is the test-retest formulation'of

reliability as the correlation between two administrations of parallel

tests at the same (or nearly so) point in time. This procedure most closely

approximates the classical reliability definition but relies-heavily upon

'the extent of true equivalence between the tests. (The same test could,
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/of course, be used twice, but thenpraCtice effects might lead to in-

flated-test-retest correlation.) This procedure most closely approxi-

mates the empirical assessment Of aCCuracy as discussed in the previous

section.

Reliability as Internal Consistency. .This is the test-retest para-

digm taken to its logical conclusih. .For example, split-half reliability'

is one form of internal consistency equal to the correlation between two

random balVes of the test when adjusted upward by, the Spearman-Brown

(Spearman, 1910 & Brown, 1910) equation to correspond to the full length .

test. But then we'could compute a "split-fourths" Coefficient by averag-

ing all possible correlations between four random quarters of the test and

adjusting this average accordingly. EVentually, we get down to the item

level, treating each item as a parallel replicate "test.", The intraclass

correlation.(average inter-item correlation) stepped-up by a factor of k

(the number of items on the total test) by the Spearman-Brown formula turns

out to be equivalent to the mean of all possible split-half coefficients

(computed using the Ruloin-Guttman formula [Rulcn, 1939 & Guttman, 1945])

and was originally derived by Kuder and Richardson (1937) as their formula

number 20:

KR20
k 1

Epi(1-pi)
)[1

2 -

X

2
Since ro.i(1 - pi) is th'e variance (si) of a binary item, this formula is

often written more generally as

Z .

2

KR20 =
k- 1 [3:

S

s
z

x

( 9 )



2
Moreover, since the total variance s

x
can be decomposed into an additive

sum bf all item variances and twice the sum of all possible inter-item

covariances, this formula can also be written as

KR20

r. s.s
lj j

k-1\ si

(10)

average interitem covariance

1 j average
)

k - 1 (average interitemA

iteM variance k, ` covariance '

Fri:5m equation (10) it is evident that,this eStimate of reliability

(a) approaches 1 as the number of items increases (so long as additional

items are positively correlated lAth the total test score) and (b) is

a Measure of the extentito which items are intercorrelated--with each other

or, equivalently, with the total ;test score. Hepce, the use of the term

"internal consistency." It becomes clear, then, that this is not only

an index of reliability, but also an index (necessary but not sufficient)

of the extent to which the set of items comprising the test are measuring

the same construct (ability). In the sense of internal consistency,

therefore, 'reliability has a direct bearing upon the construct validity

of the test. As noted above, it is for this reason that many traditional

test theorists and practitioners hacie used the terms "homogeneous" and

"unidimensional." to refer to this property of a test.

In a nutshell, these are the tenets and consequences of classical

test theory. I have ignored a few other important consequences, primarily

those having to do with the conceptualization of validity (effects of
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6

test length, correction for attenuation, and so forth). For purposes

of comparison, however, the concepts so far developed are sufficient

-to illustrate what I believe to be'profound differences between clas-..

sical test theory and other, perhaps more realistic, measurement models.

Item Sampling Theory

One of the more difficult assumptions to accept (and empirically

realize), is that requiring strictly parallel tests' (or tems). But with

a slight shift in perspective, this assumption can be avoided.

Consider again the layout in Figure I. Suppose the k items are a random

sample froM a co ly infinite population (universe, domain, pool,

bank, etc.) of 1 s. over which a s,tudent's score would be meaningful.

This score would theoretically be the student's true score: Likewise,

the n students can be conceptualized as a random sample from an infinite

population of students. And an item's true "score" (difficulty) is the

theoretical average score on that item for the population of students.

In essence, what we have is the well-known random effects analysis-

of variance design, i.e., an n-by-k, students-by-items, random matrix

sample from an infinite students-by-items matrix population. Once'again,

a linear, additive model is assumed; adopting the convention of using

Greek letters for the population parameters, any student's (s) observed

score on any item (i) s decomposed as follows:

= p T
S

"4" E.
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where

.23-

= the overall mean r flecting the .

general eveT of re onse relative
to-no resijonse zero;

T
s

= true score for students s;

r. = true score (difficulty) er item i;

= residual or error effect wh'ch could
esi also be regarded as the stud nt-by-item

interaction effect"(1.71
i
) fo a design

with one random observation per cell.

4

With the addition of one more critical assumption--the statistical

independence of student-item responses--the components of variance mean

square expectations shown in Table 1.can be derived (Cornfield CTYkey,

1956).

Table 1

/Components of Variance Mean Squar xpectations

,
For the nx k Random ANO A Model

Mean Expected

Source, df Square Mean Sqyare

Students n-1 MS a2 + ka2
S

E T

2 2

Items -- k - 1 MS a + na
,I e n

i

2

Error (n-1)(k-1) MS
E

a

5
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Now an internal consistency form of reliability can be derived with-

\

out resorting to a definition based unon strict parallelism. Already, in

accordance with the model, items can be characterized as randomly "parallel."

We can proceed directly by defining reliabiltty (p
XX

) as the proportion of

total score variance (a2) that A's the true score variance (0.2). Since the

model implies that

reliability can be expressed as

2
a
T

2 1 2
+ a

T N E

(12)

Using mean squares as estimates of their corre,spOnding expected values,

-

reliability can be estimated as

MSS - MS
E

xx Mss
(14)

which, with a bit of alge raic manipulation, can be shown to be identical

to equations (8), (9) and (10) above. (This form of KR20 was first derived

by Hoyt, 1941.) vqic, of course,, is the corresponding estimated Standard

error of measurement equivalent_to equation (7).

In terms. of at least two important applied consequences (and there

are more), then, both classical test and item sampling theories lead to

the same result. Perhaps they are more similar than one might think.



- 2.25

Indeed, with the exception of the strict versus randomly parallel test

distinctions, both theories are f6rmally equivalent. It can be shown that

the Cornfield and Tukey (1956) assumptions of the random components model

imply assumptions (a), (b).and (c) above for the classical test theory

model, and vice-versa. (See. Lord and Novick, 1968, section 2.7.)

Nonetheless, the ANOVA framework implied 15y the item sampling m6del

provides a convenient conceptual.and analytic rubric that "liberates"

(Cronbach, et al., 1963) the several classical reliability notions--that

is, the Sampling model emphasizes the multiplicity of possible reliability

coefficients depending upon practical measurement consequences. Cronbach

and his associates (Cronbach, et al., 1972) have formalized these concepts

under the label "generalizability theory." In the simplest design, namely

that represented in Figure 1, the "generali2ability" coefficient is, of

course, given by equation (14), designated previously by Cronbach (1951)

as coefficient alpha (a). But other more complicated designs'are also

relevant and are obtained by adding more factors (facets)--and, therefore,

more than.one kind of true score parameter each wiA its corresponding re-

liability coefficientto the ANOVA design. Suppose, for example n

classes p.e observed k times by r raters on o occasions. We can ow talk

about (and compute) reliability coefficients not only for the main effects

due to observations, raters and occasions, but for the possible inter-

action effects as. well. Using generalized Spearman-Brown procedures, data

from one study can then be used to estimate the k, r and o necessary to

reach desired reliability levels in a future study. Moreover, sothe facets

might be considered fixed and others, random; and some populations finite,
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others infinite--all depending upon the practical applicaticins intended.

However, notwithstanding the considerable conceptual and applied

bedefits accrued through liberating classical test theory of its strict

assumption of.parallel measurements, both theories conceive the fundamenta

dynamic of an achievement test identic,iYfl Items play roles as replicate

measurement rules rather than calibra ions on a single measurement rule.

Hence, they are first and foremost t eories of accuracy--not of precision--

as these ,concepts have been defined above.

Binomial Error Model .,
An interesting twist on the item sampling,model occurs if we restrict

our attention to the single student s and conceptualize his/her responses

to a random sample of k items as k ineendentbinar y events, eactr with

the probabiliiy ts of a correct answer where is the hypothetically

true proportion\correct score for student s in the population of items

from whence the sample was drawn. This is the simpTe "loaded coin-flip-

ping" model, i.e., a binomial model, where the probability for success

(saYT "heads") is p. Over repeated trials of n coin flips each, the

standard deviation of the sampling distribution (i.e., Le standard error)

of the observed proportions of "heads" is well known to be vip (1-p)/n.

Translated to the notation and purpose here, the standard error (of

measurement) for student s is the standard deviation of his/her sampling

distribution of observed propgrtion correct scores (;) on repeated ran-.

dom samples of k as described in the paragraph above. This standard

error (denoted a ) is given,'therefore,,ases
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(15)

This standird error of measurement is estimated for each student by

correcting (15) for sampling bias 4nd substituting observed scores for

true scores:

./4T (i-3c)
sE

s- k7

(16)'

It shoUld be clear from equation (15) that for item sampled tests

of fixed length k, different standard errors of measurement obtain for

different true scores. Students obtaining a score of 50 percent will have

the largest estimated standard error, i.e., .0k- 1; ses decreases syme-

trically as scores either go up towards 100 percent or go down towards

0 percent.

This outcome, of course, is completely contrary to the assumption

of independence of true and error scores in the classical test theory

and item sampling. models. In both of these models, the standard error

of measurement (equation [7]) is a constant for all students regardless

of their observed scores.

0 ,

We can, however, derive a single standard error of measurement for

the binomial model by simply computing the mean of the individual s
Es.

To do this requires generalizing the binomial error model for an indivi-

dual's score to that for a distribution of scores. (See Lord and Novick,
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1968, Chapter 23.) And in so doing, a.couple of interesting results

emerge. Assuming a linear relationship between true and observed scores,

4

a

the usual formulation of relia6ility as the ratio of true scor

served score variance leads to the following estimate for ernal con-

sistency:

-KRzr =
k 1

[
k a2

(17)

This, of cOurse, is Kuder and Richardson's formula 21 developed originally

as an,approximation to KR20. .
Clearly, it is a function only of the ob-

served score mean (or' mean item difficulty since np = ) and observed

score variance. KR21 will always be less than KR20 unless there is

no variation in item difficulties. When all items are of equal difficulty,

they are, of course,.equal to their average and formula (17) becomes Men-

tical to formula (8).

Analogous comparisons hold for he standard-error of measurement.

For the binary model, it'follows thIt the estimated correlation between

true, and observed scores is 111:1?-21 anCI the estimated standard error ofg

measurement s:

= sx /1- (KR21)'

(18)

It can be easily shown that s is the mean of the individual student stan-

dard errors of measurement ses . This quantity will always be greater

than its analogue in classical`and item sampling models (equation [7] with
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sample estimates) unless, again, item difficulties are equal.

Discussion

Thus, excepting the test construction consequences of strict versus

randomly parallel items, all three "traditional" models appear, for all

practical intents and purposes, to be equivalent when item difficulties

are equal (or nearly so). This makes a lot of sense when one teases out

Wie-elYtTUti'§-"or-ttue -stciretnfrerent- rreach

model. In the general binary error model, the true score is a parameter

of the item population, but each student receives a different randomly

sampled set of items. Ordinarily, a student will have different true

scores on each oftthose item samples, but these are not the true scores

of interest. Rather,.it is the mean of these true scores (the item popu-

lation true score) that is to be estimated for each student. A similar

conception of true score holds for the item sampling model except that

each student responds to the same randomly sampled set of items. The

classical model is a degenerative form of the item sampling model where

all Tri are equal. But in the event that items are all of equal difficulties,

true scores-will be identical, in each item sample, and, of course, these

are identical to the true score in the populatio However, if this is

not the case, and students respond to differen item samples, mor variation

ecan be epected to enter into any summary sta stics design: to reflect

measurement error.

So Where in these "traditional" test th orie is the concept of precision

as 1 have defined it? 140ere do the theories to the construction and

talibration of the measurement device? Again, the answer is nowhere. I am not,

5 6



of course, sugget-i-ng_that items go unrecognized in traditional test

theories. However, I am suggesting that the item parameters, for ex-

ample, in the,model specified by (11),_arethere mostly by default.

Moreover, I'm suggesting that precision, which is indeed gained in the

composite test score, is serendipitious--items are invariably nonparallel

and tests are usually long enough with sufficient variation in item

difficulties so that total scores are at least positively and monoton-

ically related to the underlying ability continuum. Put slightly dif-

ferently, I am suggesting that the wrcng theoretical framework for con-

ceptualizating the act of measurement has been used to evaluate what

turns out to be a fairly common and in;uitively sensible approach to

the measurement of ability_.

Consider this ironic oulcome in terms of classfcal test theory: dif-

ferences in item difficulties (desirable buildfng blocks for measurement)

are evidence for violating the fundamental assumption of parallelism for the

internal consistency form of reliability. Moreover, such differences automat-

ically put a ceiling on the maximuM level of .KR20 (or alpha) due to the

ceiling on phi coefficients when marginal proportions are not identical. For

these reasons, we all learned that the "best" possible test was one with

items of near equal difficulty and, preferably, all at the .5 level to

maximize the potential for total sCore variance--all nice ingredlcmts for

norm-referenced applications. Not surprisingly,\it is under the "ideal"

condition of equal item difficulties that all three.traditional test theory

models are, for practical intents and purposes, identical.

This "ideal" student-item response pattern highlights the folly of
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treating items as merely short (the shortest) repeated tests. As implied

above, maximum KR20 obtain when items are at the -.5 difficulty level and

all students either get all items right or wrong. For a k-item test, then,

half the students have a score of k and half have a score of O. Clearly

little information is obtained when only two decisions can be made.

(Latent trait models, which attack the issue of calibrating test items

directly, can not even utilize "perfect" response vectors since they have

no utility in=pinpointing locations on the latent continuum.) Equally

ironic implications of this "ideal" score matrix occur for validity co-

efficients. (Se Loevinger, 1954.) It is a rather sad commentary that

"something fishy" about classical test theory was smelled early on by

scholars who continued to propagate the methods:

It may be, if items of graded difficulty levels are
used, that counting one point for each item correct
is'not a proper scoring method. The score assigned
should rather be a best estimate of the difficulty
level reached, analogous to that used in the Binet
test.... Another limitation in the theory here de-
veloped should be pointed out. The criterion of max-
imizing-test variance cannot be pushed to extremes.
Test variance is a maximum if half of the population
makes zero scores, and the other half makes perfect
scores. Such a score distribution is not desirable
for obvious reasons, yet current test theory provides
no rationale for rejecting such a score distribution.

Obviously the "best" test score distribution is one
which accurately reflects the "true" ability distri-
bution in the group, but there is perhaps little hope
of obtaining such a distribution by the current pro-
cedure of assigning a score based upon sheer number

of correct answers. At present the only solution to
such difficulties seems to lie in some type of abso-
lute scaling theory.... (Gulliksen, 1945, pp. 90-91.)

As a final example of the ironies inherent in classical models con-

sider the classical test theory notion of a constant standard error of



measurement for every possible score. Does it make sense that particular

high (or low) scoring students would have the same random error distri-

butions around thein true scores as would intermediate scoring students?

At a.purely intuitive level this doesn't make much sense at all. The

binomial errormodel makes it clear that errors are smaller at the ends

of the score distribution and larger towards the center. This makes per-

fect sensejf we think of sampling items as analogous to sampling balls

from an urn to achieve accuracy of estimation--blue balls are items an-

swered correctly, redones are incorrect items, and a student's estimated

true score is the proportion of blue balls obtained when selecting k balls

at random froM the urn.

But it makes no sense if items are conceived as fundamental building

blocks of the measurement process. In this case, "error" ought to become

much more associated with the precision of measurement. In fact, the

error pattern should be the complete reverse of that predicted by the bi-

nomial model. Errors would be larger toward the extremes of the score dis-

tribution and smaller towards the center. At the extremes, we know nothing

about the ability level of persons scoring 0 or k on a k-item test. The

analogy to physical measurement is again instructive. It is equivalent

to selecting that bundle of sticks of appropriate length such that they

can center on' the person's height. If the smallest stick is too' long

(a 0-scorer) or the longest stick too short (a 1-scorer), we have failed

to measure the person's height to wtthin the given units of precision.

In sum, it can be said that classical (and classica6jke) test

59



theories are good models for assessing the dependability of measure-

ments whose internal measurement properties are already well understood

or at least accepted as given. (Generalizability theory becomes particu-

larly useful in these circumstances as noted previously.) But they are

poor models,for directing and assessing the deve)opment of item-based

measures which, as suggested by the physical measurement analogy, rely upon

item difficulties as proxies for calibrations on the "ruler." Again,

many achievement tests produce usefulyesults serendipitouslyjorthe_

obvious reason that practitioners of classical testing methods sense the

necessity for including items of varying difficulty. But the reasons

for the eventual presence or absence of items on their tests are the

wrong ones, being rooted in a "theory" of dependability rather than mea-

surement. I will now turn to an illustrative survey of some measurement

MO s which are theoretically oriented in the latter direction.

Cumulative Test Moe.s.,

For lack of a better one, I am using the term cumulative to refer to

a rather heterogeneous class of measurement models which explicitly acknowl-

edge the measurement, function of items as heretoforediscussed. If not already

obvious, the descriptive value of this term will be apparent shortly. A

potpourri of these models will be presented in just enough detail to high-

light how they radically differ from classical (and classical-like) test

theories in their conceptual approach to the measurement act. All these

cumulative models approach the measurement act directly (using the items-as-.

sticks notion) relying on item difficulty variance for precision and cali-

bration and the total score(or a function of the total score) as an indicant

8
of the ability being measured.

Before beginning this survey, I wish to note a side benefit to using
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the "items-as-sticks" notion in developing,a measurement rule (i.e., test).

In 1963, a semlnal article by Glazer stimulated the so-called criterion-ref-

eredced testing movement. Soon thereafter, an important'article by Popham

and Husek (1969) rightly noted the inappropriateness of norm-oriented classical

test theory methods for handling the development and analysis of criterion-ref-

erenced tests. The literature virtually exploded with attempts to adapt class-

ical l*t,theory to fit the requirements of criterion-referenced tests. The

focus of these efforts was quite misdirected. The fundamental issue was not

testing or even purpose of testing; rather, it was an issue of measurement.

---Theproperrole-of- items in a test forces (or -shaul-dfame) the-test constructor

to match item content with the cognitive processes to be.assessed. Assuming

a singular construct and a scalable set of k gems having different difficulties,

k + 1 "mastery" levels can be assessed. "Criterion-referenced testing", there-

fore; is simply sensible measurement.
9

Of course, following sensible measure-

ment, one can always (a) select a particular mastery level for criterion-ref-

eeenced decisions or (b) compile group statistics for comparative purposes,

thereby developing norm-referenced test interpretations.

Guttman's Scalogram Analysis
1

David Walker (1931, 1936, 1940), perhaps the first person to recognize

the value of the doubly ordered raw score matrix, began a series of investi-

gations on the relationship between response patterns and the resultant shape 1

of score distributions. In the course of this inquiry, Walker conceptualized

the ideal response pattern and attempted to index departures from this pattern,

a condition he nicknamed "hig" after the term "higgledy-piggledy" to describe

the apparent haphazardness in non-ideal response patterns. But his interest

centered on implications for test score scatter rather than the more profound

implications for measurement itself.

Guttman (1944) reversed this focus and formalized a scaling procedure



for assessing the degree to which items conformed to the ideal response

pattern. Figure 3a presents an example of an ideal cumulative response

pattern for 20 students responding to five items. However, that this

is an ideal pattern is not immediately obvious until the score matrix

is arranged in rank order on both tudent scores and item difficulties. One

such convienent "double sorting" of the score matrix orders students

from highest to lowest scores and items from easiest to most difficult.

In Figure 3b we see the cumulative nature

inherent in the unsorted data as presented in Figure 3a. Figure 4

presents the same score distribution, but this time there are some

errors," i.e., student-item responses which do not fit the ideal

pattern. For example, student 8 should have answered item 1 correctly

and iteM 5 incorrectly, thereby contributing two student-item response

.
errors to the total 20x5 (i.e., nk) possible student-item responses.

Finally, Figure 5 depicts yet again the same score distribution but

with many errors resulting in a very poor cumulative pattern.

To index the degree of cumulativeness present in the pattern,

Guttman used a deterministic approach. All deviations (e) from the

ideal pattern are errors, i.e., the approach makes no allowance for

probable deviations. An obvious index then is the proportion of non-

errors in the entire response matrix (1-e/nk). Guttman named this

index the coefficient of reproducibility (REP) insofar as it reflected

the extent to which the response pattern could be perfectly reproduced

from thstudent scores or item difficulties. ThUs,

REP= 1- e (19)

nk
r-
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Figure 3a

Unsorted Cumulative Response Pattern
for allypothetical Ideal Score Matrix

ITEMS

12 0 1 0 1 0 2

19 0 0 0 0 0 0

16 0 0 0 1 0 1

11 0 1 0 1 0 2

5 1 1 0 1 1 4
.,

15 0 1 0 1 0 2

2 1 1 1 1 1 5

13 0 1 0 1 0 2
6'

3 1 1 0. 1 1 4

9 1 1 0 1 0 3

1 1 1 1 1 1 5

6 1 1 0 1 0 3

20 0 0 0 0 0 0

14 0 1 0 1 0 2

10 1 1 .0 1 0 3

17 0 0 0 1 0 1

4 1 1 0 1 1 4

8 1 1 0 1 0 3

18 0 0 0 1 6 1

7 1 1 '0 1 0 3

10 15 2 18 . 5

pi = .50 .75 .10 .90 .25
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Figure 3b

Sorted Cumulative Response Pattern
for a Hypothethical Ideal Score Matrix

(Rep = 1.093 cs 1.003 a = .76)
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Figure 4

Moderately Cumulative Response Pattern
(Rep = .86; CS = .63; a = .57)

1 2

ITEMS

3 4 5

1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1 0

4 0 1 1 1 1

5 1 0 1 1 1

6 1 1 1 0 0

7 0 1 1 1 0

8 0 1 1 0 1

10

11

12

1 1 1 o o

1 o 1 1 o

1 o 0 1 o

1

13 1 1 0 0 0

14 1 0 0 1 0

15

16

17

18

19

20

1 1 o o o

1 o o o o

1
\ ,..\ U o o o

\, .
1 \O 0 0 0
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0 0 0 0 0
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.75 .55 .50 .45 .25
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Figure 5

Poor Cumulative Response Pattern
(Rep = .74; CS = .46; a = .49)
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But REP can never be smaller than the average of theobserved item diff4culties

(pi) or easinesses (q1=1-pi), whichever are greatest. That is: ,

Min(REP) = Ma x p ,q (20)

The degree of improvement (IMP) over minimum reproducibility is,

therefore,

IMP= itEP-Min(REP) (21)

Moreover, the maximum possible improvement is

Max(IMP)=1-Min(REP) (22)

Thus, a more realistic appraisal of the degree to which items scale,

above that expected by the marginal results alone, can be seen in the

ratio of IMP to Max(IMP). Denoted the coefficient of scalability (CS)

by Menzel (1967 ), this index can be written as follows:

REP-Min(REP)
CS-

1-Min(REP)

(23)

It haS usually been recommended that reasonable scalability requires

REP> .9 and CS> .6. The score matrices in Figures 3a, 4 and 5 depict

what are ideally, moderately and weakly cumulative response patterns.

These descriptors are clearly reflected in the values of REP and CS

accompanying each score matrix.

There are probably three basic reasons why Guttman scaling recetved

little favor in the achievement testing arena. FirSt, for reasonably

homogenious objective domains, it is difficult to write achievement items

which scale well. In fact, Guttman devised the scalogram procedure for

1

attitude measurement, where it is often easier to write items with
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distinctly different affective magnitudes (item "difficulties") cover-

ing the same essential domain. ,Second, Guttman made unrealistic claims

regarding the power ofscalogram analysis,to test unidimensionality,

thereby opening up the procedure to a barrage of criticism. (See, for

example, Festinger, 1947 and LoeVenger, 1948.) In line with the dis-

cussion of untdimensionality earlier iR this monograph,'Guttman would

have treaded firmer ground were he to have simply sugget-edthat a

scalable set of items is necessary but not sufficient evidence that

a set of items measureS the same thing to within reasonable evidence

of content (and/or construct) validity. Third, and probablimot,critical,

the model was deterministic and offered no statistical (i.e., probabil-

istic) tests of fit. (See Torgerson, 1958.)

But no criticism was ever directed at the most important notion be-

hind Guttman's approach, namely, the measurement role of items as: in

essence, calibrations on a "yardstick." The approximation to,the ideal

pattern (Figure 3h) would most likely be the acknowledged goal of most

achievement test constructori. Yet, instjad of txpending considerable

effort ip mapping the codnitive consequences of instructional units

and writing, testing, modifying and rewriting relevant items that do

begin to show nice cumulatiVt properties, test constructors have been

content to'build tests On the classical test theory principle of re-

dundancy, i.e., repeated measurements to realize'reliability (as internal .

consistency).
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As an interesting..aside note, even the deterministic nature Of

Guttman scaling was' rendered a non-issue by a number of writers. Perhaps

the most ingenious approach was based upon Cox's (1954) analysis of

covariance model for cumulative repeated measureMents (see Maxwell,

1959 and Ten Houten, 1969). Other techniques were investigated by

Goodman (1959), Sagi (1959) and Schuessler (1961). The point of this.,

note js sfmply that attention needs to be redirected towards the under-

lying 1rinciplesofmeasurernent and away from the worry of more or less

sensit ve statistical indicators--not that the latter are unimportant,

but that the fonnerare much more so.

Loevinger's Homogeneity Analysis

In her 1947 monograph, Jane Loevinger delivered what I believe to

be among the best and most provocative critiques of classical test

theory; and she followed up with an equally provocative critique of

item sampling theory in 1965. To be sure, some of Loevinger's criti-

cisms were a bit overstated, particularly her judgment that tpe axioms

f,classical ..tek theory were circular (see Novick, 1966). But gen-

erally, her View regarding the inappropriateness of treating iteMs

as repeated measurements and her switch in focus from reliability to

constructing cumulative'scales represents the fundaMental dontribution.

Like Guttman, Loevinger's approach is based upon deviations from

the ideal response pattern. Unlike REP Cand its derivatives), however,

her homogeneity index CH) reflects these disdrepancies in terms of

f3L)



maximum expectations.given the difficulty level of the items. Assuming

items are arranged in ascending order of difficulty, then for any two

items i and j the usual four-fold classification table obtains:

1 a

Item i

Item j

0 c

a+c

a+b

; c+d

b+d n=a+b+c+d

Pi
u

(a+c)/n (b+d)/n

Pi=(a+b)/n

q.=(c+d)/

a, b, c, and d are the number of students in each of the respective

possible score patterns. Since we have arranged the data assuming item

i is easier than j, a+b must be greater than a+c; in proportion terms,

P
i
>1)j:

Ideally, no one answering thyore difficult item correctly would

answer the easier item incorrectly. The ideal four-fold clasification

table would then look like this:

Item j

1 0

Item

1

0

a

0

a b+d

a+b



4

But in the actual testing process, "errors" do occur and c, the number

of students getting the more difficult item right but the easier item

wrong, is often not zero. These are the deviations from the ideal

scale types in Figure 4.and 5.

Loevinger's index of "homogeneity" focuses just on the outcomes a and

c, that is on the easier item's scokng pattern for those students

answering the more difficult item correctly (heavily outlined column

fn above schematics.) In other words, the index is based upon the

conditional prObability pilj of answering item i correctly given'that

item j is answered correctly. In the general case, this probability is

given by the number of students a who answered both items correctly

divided by the total number of.students a+c who,answered item j correctly:

a pij

Pilj- a+c (24)

where p
ij

is simp/ly the proportional eluivalent of a, viz., a/n, which

is the probability of answerjng both items i and j correctly. In the

ideal case, perfectly homogenious items (like in Figure 3b), c=0.and

pilj=1., In the perfectly heterogenious case, we would expect items to

function completely independently, i.e., pirpipi, in which case

Pilj=Pi by (24) above. An index9f homogeneity between the two items

i and j can then be formed as follows:

observed improvement in p.i. over

H
ij

= that expected under perfet3heterogeneity
maximum possible such improvement if
items were perfectly homogenious

(25)
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In form and intent, this coefficient is analogous to the coefficient

ofscalability(23)proposedforaittmanscaling.ButH.i has a number
j

of further properties. Among the more interesting is the following:

=
(26)

, Max(cp..)
ij

where
ij

is the ordinary Pearson product-moment correlation between tlgo

items which, since the items are binary, is also the fourfold point-coY'-

relation computed as:

= Pij PiPj

p

(27)

But cpij cannot reach unity unless the marginals pi and pi are equal,

i.e., unless the 'item difficulties are equal. This is exectly the

circumstance under which the tw6 items are useless for purposes of

precision, i.e., they replicap the same cllibration information

rather than add decision points to the scale. And of course this is

exactly the condition most suited for classical test theory, a theory of

accUracy.

However, we can."correct" ¢u by dividing it by the maximum possible

value it can assume in the case of unequal pi and 0.. That is

'and thus

Max(cpij) = Pj- PiPj

p Pj j

ji
P-- P-Pij = j

Max(cpii) p pip

72

(28)

(29)

)



Upon diyiding both numerator and denominator of (29) by pj, the equiv-

alency given by (26) is verified.

But the result is more than algebraic. The maximum cPij is obtained

when all the students answering item j correctly also answer item i

correctly, i.e., when pij=pj. This, of course, is the ideal cumulative

response pattern shown in the above schematic. Thus, (Pij/Max(cPij) is

really measuring the extent to which this ideal is obtained and ranges

from 0 to 1 accordingly. Unfortunately, this index suffers a bit from

the fact that it can also be 1 in value for items of equal difficulties

when the b cell is also zero. Even in the extreme case of Figure 6,

the overall index (H
t
) of homogeneity (see below) is unity. Guttman

indices suffer from the same problem. In effect, the scaling indices

being presented here are necessary but not sufficient indicators of

the cumulative nature of the test items. (See footnote 8.) We must

also, therefore, have some indication of item difficult spread over

. the ability range of interest.

To complete the discussion of Loevinger's approach, we note that

a weighted average of Hij can be formed for all item pairs i and j (such

1

that pepj) yieldirig an overall index of test homogeneity (Ht). The

most straightforward approach to constructing Ht is to reconsider

equation (29) which was fOrmed'as a ratio of equations (27) and (28).

Since the item variances in the denominators of (27) and (28) cancelled

out, (29) is, in effect, the ratio of the observed covariance of items,

i ahd j to the maximum possible covariance given the pi and pj. An

overall index can then be formed as a ratio of the sum of the k(k-1)/2

unique observed covariances to the sum of the corresponding k(k-1)/2

maximum covariances:
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Figure 6

A Degenerate Case:
ihe Perfect Classical Test Response Pattern

(Rep = 1; CS = 1; a = 1)
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E E (Pii PiPi)

H
t

i j-

E (P-
i j

PiPi)
3

Covij

Max(COV..)
13

(30)

where Cov .. denotes the covariance between items i and j. Some algebraic
ij

rwipulation of (30) will verify that it can also be written as

H
t

E E p .q. H..
3 1 13

E E p.q.

'
(31)

i.e., Ht is a weighted (by pjqi) average of Hij = (1)ij/ Max(cpii). This

makes intuitive sense since pjqi is the expected proportion of errors

in the completely heterogeneous (non-cumulative) case.

It should be clear that H
t

is an average inter-item.statistic assess-
,

ing the degree to which all possible ordered item pairs are homogeneous

(in the cumulative sense) on the average. Thus, it does not increase

merely as a function of increased number of items as does the internal

consistency coefficient' a in traditional test theory. This is as it

sftuld be since H
t

is intended to index the cumulative structure of items

while a is aimed at assessing the reliability of repeated item measurements.

Ironically, Horst (1953), capitalizing on the seductively simple re-

lationship between Ht and the intraclass reliability coefficient of class-

ical test theory, has proposed "blowing up" Ht by a factor of k using

the Spearman-Brown prophecy formula to correct the ceilin effect prob-

lem of unequal item difficulties in classical test theory. To his credit,

Horst is among the few test theorists who has recognized conceptual



differences between reliability and homogeneity and devoted ample space

to Loevinger's work in his book on measurement theory (Horst, 1966).

But although I can relate to the intended use of the modification

offered by Horst, the modification once againconfusesfundamental

measurement issues by commingling the concepts of precision and accuracy.

Consider, first, the specifics of the modification. The intraclass

reliability (rii) in classical test theory is the reliability of the

average single-item test. It can be shown that by adjusting rii upwards

by a factor of k using the classical Spearman-Brown formula, we end

up with the KR20 (or a) formula for t7-eliability at the total test

level. Noting that rii can be defined as the ratio of the average inter-

item covariance to the average item variance, i.e., ,

-r..s.s. Cov
ijrii = 1,3 j

7r-
Var.

(32)

the relationship given in equation (10) leads directly to the Spearman-

Brown "correction" as follows:

KR20 =
k r

1 (k-1)rii

(33).

Novicthe maximum possible rii given the disparities in item difficulties

is

/ (.
Max(r ) =

MaxCov.)
1J

Var.

If we correct r
ii

in the usual manner, it is obvious that

r . .

11

coylj ..

1-1

Max(r..) Max(Covij)

4.

(34)

(35)
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The sugges.ted.modification by Horse/therefore, is to substitute the

corrected r i.e. H
t'

in "equation (33), thereby making it possible

for KR20 to reach unity even when item difficulties are unequal.

Corrected KR20 =
k H

t (36)

1 + (k-1)Ht

Consider, second, the implication of this formula. A test can be

perfectly homogeneous by adding an infinite number of mostly heterogeneous

items so long as they are positively correlated. Now this seems reasonable

for achieving increasingly accurate measurements; but it does not neces-

sarily lead to increased precision and a more scalable set of items.

Suppose, for example, the test is doubled in length by adding k parallel

items, i.e., items that are equal in difficulty, one-for-one, to those in

the original test and that scale identically to those in.the original test.

We now have twice the test information at each ability level but still

tfie same number of ability levels represented in the test. Suppose,'

again, that the new items are equally scalable but have difficulty levels

between those of the original items. We now have the same information

at each ability level but twice the number of ability levels that can

be assessed. Formulas such as (36)/"b1ow-up" the index indiscriminately'

thereby conflating'the issues of accuracy and precision.

Horst (1966) makes an effort to distinguish reliability and homo-

geneity by noting that reliable items are a neceSsary but not sufficfent

condition for high Ht. Thus, high Ht is, in part a function of reliability.

Now this is true for reliability at the item level. But it is not true

for reliability (as internal consistency) at the test level. Again, I

am trying here to4plearly separate the precision obtained through cali-

/

brating a homogeneous or unidimensional test from the accuracy of test.



Bentler's Monotonicity Analysis

I include a discussion 'ef Bentler's (1971) approach here primarily

to emphasize that multidimensionality is not an intractable issue when

measurement is conceived and operationalized as a cumulative scaling pro-

cess. Thus far I have avoided the issue of empirical dimensionality

suggesting, instead, that a scalable or homogeneous set of ii-ems plus

reasonable evidence of content validity is a necessary but not sufficient

condition for unidimensionality. Although I (and others) often use the

terms unidimensional and homogeneous synonymously, it should be understood

that the former is not an automatic consequence of the latter.

Preferring the term monotonic (instead of cumulative), Bentler

quite cleverly recognized that Yule's Y coefficient ( a simple function

of the more familiar Yule's Q coefficient) for association in a four-fold

table (see Yule; 1912) possessed none of the drawbacks of

or cp/cpmax when subjected to an ordinary principal components factor

analysis. For any two items i and j, this index, renamed the monotonicity

coefficient by Bentler since he developed it in a more general form,

is.given as follows:

bc - ad
m (3/)

c + ad + 2 abcd



where a, b, c and d are as given in the four-fold table layout in the

previous section. The nice thing about Yule's association measure is

that it becomes 1 (or -1) only when one (or more) cells'are empty.

These include exactly those four-fold response patterns of cumulative

scales; and a principal components factor analysis of the inter-item

m-matrix will recover two or more cumulative scales embedded in a set

of items.

As an index of homogenity, m is very stmilar to H1J... And, like

Loevinger, Bentler proposes the average of all k(k - 1)/2 inter-item

monotonicity coefficients, as an overall measure of inter-item

homogeneity. But then, like Horst, Bentler becomes concerned with the

length of the test not being represented in the index. Thus, he pro-

posed the same Spearman-Brown transformation of irfor a final, overall

measure of the test's homogeneity (h),

k m (38)

1 + (k -

and, in my view, falls into the same trap of mixing up fundamentally

distinct measurement issues.
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Sato's Student-Problem (S-P) Matrix Analysis

Sato (1980) developed yet another means for indexing departures

from the perfect Guttman or cumulative scale. But this time the notion

seems to have caugtit. on. It is difficult to tell at this time whether

it is the novelty of the procedure (and its more sophisticated mathe-

matical basis) or whether more methodologists have begun to internalize

the need to reconceptualize the proper measurement role of items. In

any case, Sato's contribution reiterates the appropriate focus for un-

derstanding the measurement act, viz., the doubly ordered student-by-

item (problem) matrix of raw responses (e.g., Figures 3b-5).

Interestingly, Sato's approach, unlike those discOssed previously,

Utilizes a mathematical model of the ideal non-cumulative response pat-

tern. An index of fit, then, is based on the extent of observed response

pattern departure from the perfectly heterogeneous model. Specifically,

any ordered student-by-problem, (item) matrix can be partitioned into '

sections corresponding to the expected deal cumulative patterns based

on either the student scores, the S-curve, or problem scores (item diffi-

culties), the P-curve.

Figure 7 depicts the process of analyzing the student-problem matrix

in this manner. Figure 7 is simply Figure 4 again, but this time the

cumulative student and problem score distributions are presented,, separately,

and superimposed,-on the S-P matrix itself. As an exercise, superimpose
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the S-curves and P-curves appropriate for the matrices in Figures 3b-and 5. You

will discover that in the ideal case (Figure 3b) the S- and P-curves are coin-

cident; and in the cse of.poor cumulative response pattern (Figure 5), the

curves are obite far apart and much more so that they are for the moderately,

cumulative pattern exhibited here (and in Figure 4).

Thus, the area between fhe S- and P-curves--proportional to the ntfiber of

student-item responses between the curves--reflects the degree-,of departuf*Irom

6

the ideal cumutative response pattern. (In general, the numb& of student-iteM
1

responses between the S- and P-curves is ciose to, but is'not f cfonally re- fv

lated to, the total number of Guttman errors, viz., twice'l-he number of O's

above, or l's,below, the S-curve.) To construct-41 index similar to-the ca-
,-

. efficient of scalability for Guttman scaleS,iihe maximum possible area between'

the S- and P-curves must be calculated for the perfectly heterogeheoUs student-

problem response matrix of the same dimensions and mean performanCe. Sato

models the ideal'heterogeneous matrix by assuming simple binomial sampling for

problems and students. Thus, the ummlative binomiaT distributions with

parameters k and TT and parameters n and 15 model the S- and p-curves respec-

tively. Denoting the areas between the observed and binomial S- 'and P-curves

as A(n,k,-0) and AB(n,k,p) respectively, Sato's disparity 'coefficient is given

as follows:

A(n,k,1-5)

AB(n,k,T1)
( 3 9)

(A more computationally tractab e estimate of D is given by Sato, 1980.)



This index reaches 1 in the case of perfect heterogeneity and 0 in

the case of a perfect cumulative (homogeneous) response pattern. It there-

fore varies inversely (and I expect quite highly) with the other indices

of homogeneity discussed in this section. Moreover, Sato (1980) defines

analogous coefficients at the individual student and problem levels (called

caution indices) which serve to highlight those students and items which

depart considerably,from ideal expectations. Loevinger (1947) developed

a similar index for items whereas Guttman relied exclusively 0: visual in-

spection of the response matrix. In the final a alysis, the increasing

popularity of Sato's approach is most likely due to the emphasis placed on

the raw score matrix, with handy indices (for spotting aberrant cases) of

great practical utility for the ordinary classroom teacher. For recent

developments in the U. S., see Tatsuoka (1978), McArthur (1981), Harnisch

and Linn (1981), and- Miller (1981). (See also the chapter by McArthur

in this monograph.)

Rasch Measurement: A Latent Trait Model

Latent trait theory, or item response theory (Lord, 1980), refers

to a whole class of statistical measurement models based on the same fun-

t\
damental conception of the measurement act guiding the cumulative models

cl

surveyed thus far. However, latent trait models make important allowances

for those "minor" points we glossed over while drawingeithe analogy to the

physical sciences. Specifically, these were the points relating to the

variability of both the item difficulty positions as "hash marks" on

the "ruler" and the underlying ability continuum itself, as one moves

'5)ti



from one 4u1er" to the next. For our pur% oses here, we will review

only the simplest of therlatenf,trait models, viz, the 1-parameter

model, developed three decades ago'by Georg Rasch. A riumber of good

presentations and/or reviews of latent trait models generally, and the

Rasch model in particular, currently exist. Some examples are: Rasch'

(1980 reprint of 1960 edition); Wright and Stone (1979); Hambleton and

Cook (1977; see that entire issue of the Journal of EducationatiMea-

ment); Lord (1980); and Traub and Wolfe (1981).

The Rasch model (and latent trait models generally) a'ssumes a single

invariant ability parameter and specifies a probability function over

the entire 0-1 range that any item will be answered correctly by students

of a given ability. Specifically, Rasch first approached the problem

by imagining independent person and item parameters reflecting, respect-

ively, ability and difficulty (or, its reciprocal, easiness). Second,

he envisioned the same cumulative response pattern as the ideal outcome

when persons with varying abilities encounter items of varying d4ficulties.

But he modeled the process probabilistically, not only to avoid the deter-

minism of previous approaches, but to establish an invarialt measurement

scale so lone as the model fits the em irical realit of the test data

in question.

The model he selected is a simple odds ratio, i.e., the odds (ssi)

of student s with ability As correctly answering item i with difficulty

D. are given as

A
= s

s
D.
1

(40)



Instead odds, we can use the more convenient 0-1 scale of probability.

If Ysi is the probability of student s answering item i correctly, tnen, by

definition, P. = 'Si /(1+8 ) Thbs equation (40) can be rewritten as

P =
A
s

si
D

i
+A

S

(41)

It should be clear that, as hypothesized, the model predicts a lower chance

of success for a student with lower ability encountering a relatively more

difficult item, a higher chance of success for a student of higher ability

encountering a relatively less difficult and a 50-50 chance of success

wheot the bflity o.fvthe student and the difficulty,of the item are identical

These are invariant properties of the person and the item and are presumed

to be independent of each other.as well as of the other abilities of the

persons being measured and the other difficulties of items doing the mea-

suring. Again, this specific objectivity (as Rasch calls it) is operational

only to the extent thac these presumptions fit the reality of the data.

Equation (40) becomes computationally more tractable as a simple

linear function by takinp the logarithm of both sides, i.e.,

log (esi) = log (As) - log (Di) (42) .

Likewise, equation (41) can be so converted; but it is usually expressed

in exponential form using the natural base e and the substituted parameters
a, S.

as = log (As) and Si = loge (Di). In other words, e = As and e 1 =, Di

and equation (41) becomes the so-called logistic function



e

a
s i

P . =
s,

(43)

c:.
Oftourse, the same logic is embedded in (43). as was in (41), except now

the interplay of person encountering item is reflected in the difference

between the transforMed.ability parameter as and difficulty parameter

di. When equation (43). is graPhed for all possible values of this dif-

ference, i.e., for Eti = as - S. where -cof _if..., the so-called re-

sponse characteristic cUrve results (see Figure 8). This represents the

simplest Togistic model, often called the I-parameter model, since Psi

is really only dependent upon the single discrepancy Alternatively,

for fixed difficulties d. Or abilities as, the ogive in Figure 8 repre-
i

sents equ'ally well the item characteristic or person characteristic curves

respectively. f

The rather elegant simplicity of the Rasch technique for scaling is

realized through this important property of the model: the student raw

scores (rs) and observed'item difficulties (pi) are sufficient data from

which to derive the best estimates of as and di respectively. In effect,
4

the double ordering of the student-by,item raw score matrix best estimates

theord cringthatwouldoccurwerewetoknowtheactualasandd.Thus,
1

persons with the same raw score r from the same set of items will receive

the same ability estimate ar.

To estimate and a and d, therefore, the n x k raw score matrix is

merely collapsed row-wise such that rows now constitute the ki-1 possible raw

scores and cell entries are the proportions of persons in the rth raw score

group correctly answering the ith item. If the index r is substituted for the
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index s in equation (43), it should be clear from the above property that

these cell proportions (Pri) 2re all estimats of their corresponding Pri.

In general, then, there are k(k+1) equations of the form

P .

with only 2k+1 Unknown values of the a and 6.1° (In practice, no information

is provided by raw scores classes r = 0 or k or by observed item difficulties

p = 0 or 1 and these rows and/or columns, should they occur, are eliminated

for purposes of analysis.)

There are several approaches to the solution of these equations and

testing the fit of the results to what the model predicts. (See references

noted previously.) The important point for our argument here, however, is

that this model again conforms to the measurement of a property as we ordinarily

conceive of it. Moreover', when this particular model fits the data reason-

ably well, the parameter estimates of a and 6 are reasonably independent of

the particular ability and difficulty levels of specific student and item

samples, thereby, providing viable approaches to normally thorny testing

problems such as test equating, item banking, tailored testing, and so forth.

Finally, it is interesting' to note that for each person's ability estimate,

there exists,a so-calledstandard error estimate. But the only thing this

estimate has in common with the standard error in traditional test theories

is its name. The latent trait standard error is really based upon an infor-

mation function that i'eflects the level of precision at the various ability

calibrations. It bears no relationship whatsover to any notion of.item/test



replicatior, i.e., accuracy (or dependability). Thus, the latent trait

standard error is an index of precision and behaves accordingly, i.e.,

it is larger for ability estimates towards the extremes and lower for

ability estimates towards the center of the item difficulty range.

Summary

To summarize the foregoing view and review, test theoreticians and

practitioners must carefully distinguish their model of measurement from their

model of the dependability of measurements. The former refers to the con-

cept of precision that is applied in the construction of tests. The

latter refers to the concept of accuracy that is applied to the result

of testing under specified conditions of use. Items play a central role

in measurement models; in models for dependability,they, are of incidental

importance insofar as the accuracy of estimated ability measurements is

of primary importance. Clearly, truly useful test theories necessarily

require both measurement and dependability models.

Classical (and classical-like) test theories are really models for

the dependability of measurements. They are good for assessing the ac-

curacy of the results of a testing process when the process is conceived

as one (or several) of a great many (often infinite) measurement attempts

When each of the repeated measurements is conceived as a replicate (per-

fectly parallel) measure, we have classical test theory as originally

developed. When the measurements are conceived as a random sample from

a domain of interest (i.e., randomly parallel measures;, we have the

item sampling versions of classical test theory. At the core of all of
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these theories, however, is the concept of repeated measurements. When-

ever the results of behavioral assessments can be so conceived, classical

test theories, in particular generalizability theory, enjoy a wide range

of application. (See the recent review by Shavelson and Webb, 1981.)

But these test theories "dig their own grave" when they attempt to

translate repeated measurements concepts to the internal structure of

the test itself. Recasting items into the role of strictly parallel (or

randomly parallel) measurements can't help but give rise to "test construc-

tion" procedures baed on maximizing inter-item relationships.- This pro- '4

cedure automatically eliminates items reflecting ability at the upper and

lower ends of the "ruler." Thus, empirical evidence for internal consis-

tency (in the reliability sense) cr homogeneity/unidimensionality (in the

construct-hlidity sense) is based upon the wrong covariance structure.
N,

In constrast, measurement models attack the issue of test construction

directly. They assume a singular construct from the start (relying prim-

arily apon content validation) and proceed to develop items of varying

difficulties analogous to hash marks on a ruler. To the extent that the,

set of items fits the cumulative response pattern expectation, we have

evidence (necessary, but not sufficient) that our measurement goal has

been achieved. Once satisfactorily constructed, it is quite appropriate

that the\instrument be subject to all relevant forms of dependability and

validity procedures under the conditions for use in actual practice.

These several ingredients comprise a complete test theory.
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Moreover, it shoyld be possible to incorporate dependability at the item

level as well. The schematichn Figure 9 portrays the data box necessary

to sort out -- at least in theory -- the contrasts between-test precision

and both item and test accuracy. Vertical slices of the data box contain

the data.necessary to assess the accuraci of items at each difficulty level

for all ability levels. Horizontal slices contain the data necessary to

test the scalability of items representing the difficulty levels for each

replication. Cross slices could be used to assessthe accuracy of items

at the various difficulty levels holding ability constant. Collapsing tne

data box along the difficulty dimension produces the data matrix necessary

for assessing accuracy at the test level. Of course, generalizability facets

could be crossed or nested with the repeated measurement trials to assess

accuracy (dependability) under different conditions.' The comprefeRpirical

suggestion of Figure 9 may be quite intractable from "an operational view-

point, although, for some highly specifiable items domains (e.g., arithmetic

fundamentals) on which ability varies systematically wizh other measurable

examinee characteristics (e.g., age), it may not be too far-fetched.

In conclusion, classical test theory has probably enjoyed a long life

not only because of psychological well-being through cognitive dissonance

reduction, but because tests have never really been developed without

i

vari-

)
ation n item difficulties. It is time now that we construct tests with

varying item difficulties by design--not by happenstance--and use item

analysis techniques that correspond to an appropriate.theory'of measurement.

Moreover, it is fitting that this view forces upon tis an issue of perhaps

even greater importance, namely, the correspondence of item structure with
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Figure 9

A Model for Contrast/ing Accuracy
with Precision and Calibrating a Test
of a Singular Achievement Construct

Item Difficulty
Levels

zal
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the cognitive process to be assessed. (See, for example, the arguments

recently advanced by Glaser, 1981.) It may well be that the simplistic

-ptions of dichotomous responses (right-wrong) to multiple choice or

true-false items are unrealistic indicators of the cognitive processes

underlying the abilities' we try to measure. Different measurement models

from those outlined here may offer more realistic solutions. (For example,

see the recent latent class approaches such, as Wilcox's (1981) answer-

until-correct scheme.)



Footnotes

1. I will use the term "traditional" to refer to classical and classical-
like test theories, a distinction that will be clearer in the sequel.

2. I have chosen Spearman's (1910) work, apparently inspired in 1908 by
G. Udny Yule (see Yule, 1922), to mark the beginning date for classi-
cal test theory.

3. It is important to note at the outset that I do not intend to extol
any one notion of what it means to measure achievement. Rather, I

wish to explicate a popular intuitive notion of measurement and the
extent to which it is compatible with existing measurement theories.

4. In general, I prefer the term "dependability" to the older term "re-
liability." As used in generalizability theory (Cronbach, et al.,
1972), dependability denotes reliability under specified conditions
of use. At times throughout'this report, however, I will use the
terr,"reliability" to facilitate the discussion of traditionai test
theory concepts.

5. I am using the term "difficulty" here more in a parametric sense
than as a synonym for observed p-values.

6. The analogy could be improved upon in this regard by imagining the
sticks to be subject to increases or decreases in length as a function
of various and sundry effects (some random and some systematic) due
to all aspects of the measurement context. This is a less sadistic
equivalent of Lumsden's (1976) flogging wall test.

7. Two classical test theory frameworks are in general use. One arises
out of.the definition of error as proposed originally by Spearman
(1910). The other arises out of a definition of true scores as pro-
posed originally by Brown (1910) and elaborated by Kelley (1924).
The former approach is presented here since it's simpler. All deriv-
ations end up being the same so that it is a purely academic matter
which approach is "better."..See Gulliksen's (1950) seminal volume
on classical test theory and the good historical overview by Tryon
(1957).
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Footnotes continued)

8. An important caveat should be staied here: Except for the latent
trait models, the illustrations I have selected do not in and of
themselves provide sufficient information for calibrating items
and estimating precision. ,Nevertheless, they are useful both
historically and heuristically for \underscoring the point of this
discussion, viz., the contrast between dependability and measure-
ment.

9. I am using the phrase "criterion-referenced testing" in the more pro-
found sense rather than simply as a procedure for assessing a cri-
terion level of performance. The criterion is, rather, the content
and the attempted isomorphism between the content and the measurement
rule. To quote Glaser (1963):. "Criterion-referenced measures in-
dicate the content of the behavioral repertory, and the correSpondence
between what an individual does and the underlying continuum of
achievement." (p. 520)

10. Although useful for expository purposes here, this is not really the
best procedure for etimating a and (5. (See the chapter by Choppin

in this monograph.)
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ANALYSIS OF PATTERNS: THE SLID TECHNIQUE

1 David McArthur
Center for the Study of Evaluation, UCLA

Definition of the model. A system of analyzing patterns of

student responses called Student-Problem score table analysis has been

developed over the last decade by a group of educational researchers

in Japan (Sato, 1974, 1975, 1980, 1981a, 1981b; Sato and Kurata, 1977; ,

1

Kurata and Sato, 1981; Sato, Takeya, Kurata, Morimoto and Chimura,

1981). While the mathematics associated with derivative indices in

this system are relatively complex, the S-P system itself iAs

predicated on a simple reconfiguring of test scores. Rather similar

analyses of student performance on educational tests can be found in

the professional literature of a half-entury ago, but recent

developments by Sato and, colleagues'represent significant improvements

both in cr_ncept and execution. ,The method appears to hold a number.of

possibilities for effecti've and unambiguous analysis of test score

patterns across subjects within a classroom, items within a' test, and,

by extension, to separate groups of respondents. It is.a versatile

contribution to the field of testing, containing minimal requirements

for Sample size, prior scoring, ittm scaling, and the like. The S-P

model lends itself to extensions into polychotomous'scoring analysis

of multiple patte?ns, and analysis of patterns of item bias.

Tes scores are placed in'a matrix in whi0 rows represent

indijAual repsondents' responses to a set of items, and columns

represent tHe responses given by a group of respondents to a set of

items. The usual (and most convenient) entries in this matrix ar,i2

zeros for wrong answers and ones for correct answers. Total correct

100

6
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Figure 1

S-P Chart for a Six Item Test Administered to 20 Students

Itens in ascending order of difficulty

rank I 2 3 4 5 6

item # I 5 4 2 3 6

Average passing rate p A .425

Discrepancy D* = .525

Students, in

descending order

of total score

Total

Correct .

Caution
Index for

Students

Rank
Ci *

1 02 1 1 1 .1 0 0: 4 0.000

9 04 1 1 1 1 0 0: 4 0.000

3 05 1 1 1' 0 ,1: 0 4 0.000

4 11 1 1 0 1 0 4 0.034

5 12 1 0 1 0 1: 1 4 0.552.*

6 14 1 1 1 1_, 0: 0 4 0.000

7 20 1 1--1- 0, 1: 0 4 , 0.000

8 22 1 1 1-.0 1: 0 4 0.000

9 23 1 1 1 0 0: 1 4 0.276

10 07 1 1 0 0 1: 0 3 0.033

11 17 1 1 0: 0 1 0 3 0.033

12 19 1' 1: 0 1 0 0 3 0.033

13 27 1 1: 0 1 0 0 3 0.033

*
14 29 0 1 0 1 0 3 0.433

15 03

16 06

1 0: 0 0. 1 0

o 1: o 0 1 0

2

2

0276#

0:448e t

08 1 1: 0 0 0 0 2 .0.000
(17

18 10 1 1: 0 0 0 0 2 0.000

19 15 . 1: 0 1 0 0-0 2 0.241

20 16 1:'0 0 1 0 0 2 0.276

21 21 1: 0 0 1 .0 0 2 0.276

22 28 1: 0 1 0 0 0 2 0.241

23 01 :1 0 0 0 0 0 1 0.000

24 09 :0 1 0 0 0. 0 1 0.238

25 13 :1 0 0 0 0 0 1 0.000

26 18

27 24

:0 0 0 1 pl o

:o o o 1 o o

1

1

0.619

0.619 *

28 25 :0 1 0 0 0 0 1 0.238

29 26 :1 0 0 0 0 0 1 0.000

ITEM TOTALS:
2 1 1 1 1 o

a 8 I 0 0 2

C4* caution index 0 0 0 0 0 0

J for items . .

1 1 1 4 2 0

4 1 2 3 0

7
t

8 1 3 1 0

luj-
* High caution index for unusual response pattern.



scores are calculated for 'each respondent, apd total number of correct

responses are tallied for each item. Rows are reordered byedescending

total number of correct. responses; columns are reordered by ascending

order of difficulty of ilems. ,The resulting matrix has several

aspects which are particularly cOrivenient for a detailed appraisal of

respOndents OF items, singly or
collectively. (A ,short example,

annotated and indexed'with several computations to be explajned

-

is shown on the following page.

Two cumulative ogives are drawn over the matrix to form the

framework for fuither analysis. Because the.data is discrete, the

ogives take on a stair-step appearance, but both can-be thought oeas

approximations to curves which describe in-sdmmary form the two

distinct patterns embedded in the data. The first is a curve

reflecting respondents' performance asj-shown by their total scores;

the second is a similarly overlaid ogive curve 'reflecting item

difficulties. In one special circumstance, the two curves desccibe

only one pattern: if the matrix of items,and respondents is perfectly

matched in the sense of a .uttman scale, both of the curves overlap

exactly. All of the correct responses would be to the upper-left

while all of the incorrect responses would be to the lower right.

HoWever, as the occurance of either unanticipated errors by

respondents with high scores or unanticipated successes by respobdents

with low scores increases, or as the pattern of Tesponses becOmes

increasingly random, the respondent or student curve (S-curve) and the

item or problem curve (P-curve) become increasingly discrepant. Sato

has developed an index which evaluates the degree of discrepancy or

)ack of Conformation between the S- and P-curves. This index will be
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zero in the special case of perfectly ordered sets, atnd will approach

1.0 for the case of totally random data.
9

For-any 'respondent, or for any.item, taken individually, the

pattern of scores reflects that row or column in relation to the

pattexn established by the configuration of sorted rows and columns.

For any given individual respondent or single item, the response

pattern may be "perfectly ordered" in the sense used above.- The row

or column shares a symmetry with the associated row or column

ma,rginal; in the case of dichotomous data this sjimmetry is seen in a

high positive point-b.iserial correlation. As the match between

patterns declines-- that is, as the row or 'column under consideration

shares less and less in common with the associated marginal formed

from all rowS or all columns--the point-biserial also,declines.

Unfortunately, rpbis is not independent of the proportions within

the'data and never reaches 1.0 in practice. Cases of'complete

"symmetry" between row-6?4olumn and the corresponding marginal which

happen to differ in proportions do not yield the same correlation

coefficients.

An index which is stable across differing proportions is Sato's

Caution Index C, which gives a value of 0 in the condition of "perfect

'symmetry" between row or column and role/ marginal or column marginal.

As unanticipated successes or failures increase and "symmetry"

declines, the index increases (a modification of the Caution Index,

called C*, has an upper bound of 1.0). Thus a very high index value

is.associated with a respondent or item for which the pattern of

obtained responses is very discrepant from the overall pattern

established by all members of the set.

.103



Harnisch and Linn (1982) present the modified Caution Index as

follows:

ni. J
u
ij

i-

I n
i- ------" 7

.

j=1 7" j=J+1-n1

/

where i = 1,2,...,1 indexes e examinee,
,..

.
...

j = 1,2,...,J indexes theit-!mi,

j

u
ij

= 1 if the respondent i answers item j incorrectly,

0 if the respondent i answers item j incorrectly,

n = total cOrrect for the ith respondent, and

n
ij

= total number of correct resunses to the jth item.

Harnisch and Linn explain that the name of/the index comes from

the notion that a large value is associated with respondents that have

unusual response patterns. It suggests that some caution may be

P

V

needed in.interpreting a total correct score for these individuals.

An unusual response pattern may result from guessing, carelessness,

high anxiety, an unusual instructional history or after experiential

set, a localized misunderstanding
that influences responses to a

subset of items, or copying neighbor's'answers to certain questions.

A large value may also suggest that some individualS.have

acquired skills in an order which is not characteristic of the whole

group. The index Says nothing about the most able respondents with

perfect total scores, because the "symmetry" cbndition is met. More

impOrtantly, if a respondent gets no item correct whatsoever, both the

1u4
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total score and the caution index will be zero since, again, the

"symmetry" condition is met, in this situation the avajlable

information about the respondent is insufficient to make any useful

diadh'osis. 'Most persons, though, wifl achieve total scores between

the extremes and for them the caution index provides information.that

is not contained in the total score. A large value(of the caution

index raises doubts about the validity of the usualvinterpretation of

the total score for an individual.

A related development is a modification of the Caution Index to

examira patterns of responses to clusters or subtest scores.and an

"ideal" pattern of scores of individual subtests, the perfect Guttman

pattern (Fujita and Nagaoka, 1974, in Sato, 1981).

Sato has developed an index of discrepancy to evaluate the degree

to.which the S and P curves do notkonform either to one anothen or to

the Guttman scale. Except in the'case of perfectly ordered sets there

i-salways some degree of discrepancy between curves. The index is

explained as follows:

D*
A(I,J,p)

A
B
(I

'
J

'
p)

where the numerator iS the area between the S curve and the P

curve in the given S-P chart for a group of I students.who took

J-problem test and got an average problem-passing rate p, and

Au(I,J,p) is the area between the two curves as modeled by

cdmulative binomial distributions with parameters I,J, and p,

respectively (Sato, 1980, p. 15; indices rewritten for

consistency with notation of Harnisch & Linn).

u5



-3.7-

The denominator is a function which expresses a truly random
1

pattern orresponses for a test with a given number of subjects, given

number of items, and given average passing rate, while the numerator

reflects the obtained pattern for that test. As the value of thi

ratio approaches 1.0, it portrays an increasingly random pattern

responses. F6r the perfect Guttman scale, the numerator will b& and

thus Dir will be 0. The computation of 0* is"functionally derived from

a model of random responses, but its exact mathematical properties

have not been investigated thoroughly.

Also available, but not yet studied in detail, is an index of

/

"entropy" atsollated with distributions of total scores fur students

choosing different answers to the same question. This index explores

the particular' pattern of respOnses (right answer and all distractors

included), in he context of uverall correct score totals for these

responses.

While most of the published work using the S-P method has

concentrrated on binary data (0 for wrong answer, 1 for right answer),

and calculations are most tractable in that form, the indices

developed from the configuration of S- and P-curves are not limited to

such:data. The techniq e can extended to multi-level scorfng (see

Possible Extensions to t e model, below).

Measurement philosophy. A precursor to the S-P method is the

concept of "higgledy-piggledy" (or "hig" for short) suggested by

Thomson about 1930 and elaborated by Waikein a trio of contributions

(1931, 1936, 1940), but evidently carried no further by educational

researchers at that time. Walker examined right/wronganswers to a

1 u G



set of independent items with particular reference to score-scatter,

which had been a focus of attention since the early twenties. Where

scatter reflects random behaviors on the part of examinees, "higu is

said to be present. However,

By a test being unig (the converse of hig) we mean that each

score x is composed of correct answers to x easiest questions,

and therefore to no other questions. Hig implies a deparfure

from this composition. Note that it is not sufficient for our

purposes to define unig by stipulating Lhat every score x is

identical in composition--there must be added the condition that

it is Icomposed of the x easiest items; in other words the score-x

4- 1 allways compromises the x items of the score x, and one more.

Now if big is absent, that is each score is unig, it, is easy to

show that an exact relationship exists between the n's of the

answer-pattern and the N's of the score scatter (10-1, p.75).

The parallel to Guttman scaling, while the latter

mathematically rigorous, is obvious; Satb's indice

the same underlying concepts.

Guttman's (1944) statistical model for the analysis of

attitudinal data was formulated to solve scaling problems in the

context of morale assessment for the U.S. Army. While the initial

approaches'were not at all technically -sophisticated and involved much

sorting of paper by hand, Guttman's conceptualization was powerful;

the scalogram apprOach, and especially its mathematical underpinnings,

received extensive development during the 1950s.. But by 1959,

Maxwell had expressed rather strong disappointment with the narrow

range of application these procedures had enjoyed, and suggested two

general statistics which mtgbt serve to dissolve the arbitrary

distinction between qualitative and quantitative scales, and, at the

same time, reduce some of the cumbersome calculations. (One of these

statistics is a regression coefficient developed from the residual

between observations and perfect patterns of responses to a given set

s far more

appear to address
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of items, which bears some conceptual resemblance to Sato's 0*.)

However, the primary audience for these technical contributions

appears 6 have been educattonal statisticians and researchers.

1

Only infrequently was attention given to simplifying the techniques

for a broader potential audience (Green's (1956) contribution is one

exception, although published.in'a highly sophisticated journal).

Many of the publications by Sato and colleagues in Japan seem

geared directly to end-users, teachers in the classroom who, with the

S-P method and handscoring or microcomputer processing, can analyze

their own instructional data for purposes of understnading their

students' comprehension and modifying their own instruction. The

'overarching concern of the Educational Measurement and Eva:uation

Group atthe Nippon Electric Company's Computer and Communication

Systems Research Laboratories has been development and dissemination

of readily understandable and adaptable procedures. Evidently it has

proved popular in a variety of classroom settin.in Japan, and has

been applied to the following areas:

- test scoring and feedback to each examinee al6out his/her own

performance on a test

- feedback to the instructor about both individual and group

performance

. - analysis of types of errors made by students

- analysis of instructional process and hierarchies of

instructional units

- 'item arialvsis', 'rating scale analysis, questionnaire analysis

- test score simulations

- development of individual performance profiles across repeated

testings
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Two characteristics are shared by all of these approaches:

'first, the central focus of the study is the degree to which items

and/or respondents.are heterogeneous, and second, the actual element

of.raW data (say, 0 or 1) is assumed to be best 'understood in terms of

its position in a matrix with orderly properties. Interestingly, the

artitle by Green (1956) 'noted above forms the only overt link between

the S-P method and earlier..work in English onlanalysis of response

%

patterns.

Where the S-P methoediverge- from its predecessors can be seen

ih the very reduced role played-by probability theory, and the

ab..,ence of anything resembling tests of statistical significance (a

shortcoming addressed below). Much of the Work on the S-P method is

either in Japanese or in English-language journals not generally

'available.in the West. n the U.S. the small number of research

presentations using the S-P method to date is small (Harnisch, 1980;

Harnisch & Linn, 1981, 1982; McArthur, 1982; Tatsuoka, 1978; Tatsuoka

& Tatsuoka, 1980).'

Assumptions made by the model. The S-P method starts from a

complete'matrix of scores, doubly reordered by .1 rows and J columns.

The model applies equally well to the trivial case of a 2 x 2 matrix,

and to 2 x J and I x 2 retangular matrices; it also Jappears to have no

functional upper limit on the number of items or respondents.

However, missing data-cannot be incorporated effectively. That is,

each respondent and item must ,have complete data since all

calculations are made with reference to i and j as constant values.

For purposes of reordering, if two or more respondents have.the

total score_their ranks are:tied but their positions within the sorted

1 uj

1
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matrix must be unique, so ties between marginals are resolved

arbitrarily (a situation which could Cause some small instability in

the S and P curves). Ln respect to both individual scores and sets of

scores taken as a whole, no explicit probabilistic formulation is/

involved, although underlying the analysis of the matrix is a model

premised on cumulative tlinomial odbeta binomial distributions, with

parameters I (number of_geses,), J (number of items), and p (average

passing rate). No study has been made of how guessing affects the

obtained pattern of responses., nor how corrections for guessing might

affect the S-P chart. Because of the very small number of assumptions

made by the model, its.interpretation does not require a strong

theoretical background,.and in fact can be annotated easily by

computer as an aid to the user novice. Indeed, the graphic

reordering with overlay of S- and P-curves bui no further statistics

appears-sufficient to allow teachers, with use of a brief nontechnical

reference guide, to make well-reasoned instructional decisions.

One implicit assumption deserves special attention. In the

derivation of a caution index for item or respondent, the entire

existing configuration of I items and J respondents, whether valid or

not, enters into c/onsideration. That is, because the flzame of

reference does not extend beyond the data at hand, the derivative

indices are inherently subject to limits on their analytic utility.

However, it is important to recognize that for the great bulk of

practical testing applications, such limitations in fact may be

advantageous. Each index also depends on a linear interpretatioh of

steps between marginal totals, although it is readily demonstrable

tr

o
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that substitution of a highly discriminating item for a weakly

discriminating one, or a very able examinee for a poor one, can alter

many of the indices for both persons and items. Additionally, the

linearity constraint treats all data elements within the matrix

equally, despite unknown (and perhaps inestimable) contributions from

- chance ,correct'responses. On the other hand, without further tests of

significance,.the resulting statistical uncertainties, which are small

under most conditions, have little practica) importance in the usual

classroom situation. /

\1/4

Sitrengths and weaknesses. Obvious strengths of the 5-P system

are itls simplicity, wide potent al audience, and porta.bility. The
,

---.....e.,L.

n

code required fc* computer processing can be exceptionally briefand

with the increased availability of microcomputers, can be delivered to

the clalssroom teacher directly. According to Harnis'ch and Linn

(1982), the caution indices compare well with Cliff's (1977) Cil

and C12, Mokken's (1971) H*1, TatsLoka and Tatsuoka's (1980)

Norm Conformity Index (NCI), and van der Flier's (1977) U', all of

which are harder to calculate as a rule. As an' inherently flexible

system, it appears to be suitable for a variety of test types, and for

a range of analyses even within the same test. The novice user need

not master the full range of calculations in order to make excellent

b_use of more elementary portions of the results. A sophisticated user

can easily iterate selectively through an existing data set, choosing

particular items or persons not meeting (SOme criterion for

performance, and recasting the remaining matrix into a revised chart.

Under certain conditions, addressed below, the method can be adapted

to examination of test bias (McArthur, 1982).
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Weaknesses include the following three general criticisms. No

substantive body of psychometric or educational theory preceded the

development of practical applications of the model because in fact it

developMent was not paradigm-driven. Instead, the S7P techniques

arose in response to a perceived need for classroom teachers to have a

readily interpretable, minimally'complex tool for test analysis.

Thus, at present little can be said regarding questions of

reliability, validity, true scores, scaling theory, or quality of

measurement. Nu extant work addresses either the problem of

signal/noise ratio or of model fit. The absence of a strong

theoretipl base dampens the development of rationally interconnected

research hypotheses, although the method offers ample opportunities

for direct investigation of individual performance and item

characteristics. The absence of strong theory-derived hypotheses

leaves a recognizable gap in the ability to draw strong inferences

from the S-P method. That is, in developing a diagnostic

interpretation of a student's score p .ttern, the teacher or researcher

must make a conscious effort to alance the evi'dence in light of some

uncertainty about what constitutes critical or significant departure'

(

from the expected.
\i ,

These weaknesses do not affect the classroom teache'r to any major

degree. In the classroom, the technique islused for cOnfirming

1 /

knowledge about individual students gained in the course of

interaction with the class, and/or to confirm that items on a

particular test are reasonably well suited to the claas.
,

From the

researcher's viewpoint, the weaknesses constitute rather important :

blocks to further development. On the other hand, because of some ,

f
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points of similarity between the S-P technique and less at-Cane aspects

of a number of existing models, hypothesis building tends to proceed

anyway. The absence of recognizable criteria for establishing

_

statistiaal significances for degree of heterogeneity is an important

teChnical problem. Because the various indices appear to share a

great deal in comMon wiltb-dindices having known statistical properties

s'frOm other research 7odels, an initial direction fOr such effort would

be to examine these parallels.1

Present areas of application. All of the published studies in

English to date utilize the S-P method exclusively in the context or

right/wrong (1/0) scoring. These studies each use data collected from

multiple-choice tests (generally reading or math) administered to -

primary 'or secondary level students. In this body of literature the
41:)

general application is either. to the task of' individual student

'analy,sis, or more frequently, to item analysis. W4th an appropriate

microcomputer--one marketed exclusively in Japan is configured

exclusively for the purposes of the S-P method--classroom teachers can

A
use the technique interactively. Science teachers in JaPan are

evidently the largest cluster of users, although details about

acceptance and Oily utilization remain sketchy.

A different application arises in the context of large-scale

assessment. Harysch (personal communication) reports that several

school districts have contrapted for S-P analysis of mid-year and

final achievement test scores: Several thousand individuals,tested on

dozens of items pose no new conceptual or mathematical complexity and

in this situation the results can be used to address both iteM-lewel

and aggregate-level questions.
1 1

\

1 Strong parallels also can be foimd with aspects of the analYsis of
planar Wiener processes and spatial patterns, from the doman of
mathematical geophysics:
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Possible extensions of O'le model. Three new directions for the

S-P method are being explored. The first is the application of

iterative procedures, first suggested by Green (1956) in a brief

paragraph on p-tuple analysis of Guttman scales. Zimmer. (1982) has

collected extensive developmental data on children's-perception of

various tasks arid attributions; this data incorporates multiOe

discrete levels of performance arTged,.according to'theory, in a

logical staircase P-tuple iterative analyis by the S-P

procedure appears to offer answers to thrie qutstiols: a) does broad

sample of children respond in an orderly amnner to the range of tasks;

b) does such order reflect known characteristics of the sample (viz.

/

developmental level as measured on standardized procedures); and c) do

deviations from the symmetrical relationship between the developmental

comple ty of the task and the develOpmental level of the child

reflect coisistent support for one or another competing theory of

developmentt. For this data, separate S-P analyses were made with the

'first developmental level scored &and all others 1, then the first

two Tevelt scored 0 and all others 1, and so.on. Stability of person

order and item order, uniformity of the staircase iptervals, and

relatia-rAips between itT difficulty and item complexity can be

studied. Preliminary evidence sduggests that the S-kmethod provides a

system of analysis for such multi-level data that exceeds the

explanatory power of several extant procedures.

In p-tuple analysis, which makes use of Tepeated pass'es through

data, some questions of a technical nature are unresolved at this

.time. For example, it is clear that succes4ve reorderings can

perturb the positional stability of any one respondent, within the
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matrix or any one task within the iliatrix, to some degree. However,

changes in ordering contribute to changes in the S-P indices, and

whether such changes,*and/or linearity assumptions and violations

therein, playifimportant role is also under study in the context of

this developmental d . Another way to think of this problem is to

imagine a single.matrix of persons x items with,the 'S-P chart from

each developmental level overlaid. The most difficult tasks would be

accomplished only.by the most developmentally advahced individuals,

and below a'certain competence (i.e. the highest S-cuhve on this

compound chart) virtually no one would be expected to succeed on those

tasks. The ordering of those participants who fail at all tasks of

that difficulty level is because their total score for
.

these most difficult tasks is zero. But their ordering would not be

arbitrary on tasks of moderate or low difficulty, at which more

successes might be anticipated and the corresponaing S-curves would be

'located lower on_the chart. What constitutes c.ceptable and

interpretable slippage qf this kind needs furth r prRbing. Perhaps

the best analqgy is to tht term "seiche," driWn fromIhe field of

\

oceanography: it refers io regular;/entirely Predictable tidal

motions occuring within co fined bodies of water. Such seiche in a

polychotomous S-P chart 'ought to show itself totally consistent and

predictable.

The second area for develobment of the S-P method is in the realm

of scalar data, for which a number Of statistical assumptions have

been developed. An example is signal detection analysis, in which the

"raw element" of data is once again a 0/1 response, this tir for

absence or presence of perceived stimulus. A variety of complex

115
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statistical techniqUes have been used to investigate how such stimuli,

presented across a.range of intensities ove'r a repeated number of

trials, are processed by the receiver. The analog in S-P-analys*s

might best be portrayed as a three-dimevional matrix of persons,

items, and repeatetrials. Items are not necessarily objectively

identical from triJal to trial, and responses are tempered by not one

but several possible orderly progressions. Such three-dimensional and

higher-dimensional data challenges the S-P method to provide cohesive

summary statistics which can be evaluated probabilistically.

An extension of the S-P technique to the study of test biaspas

been made by McArthur (1982). Where two distinct groupshave been

tested on the same instrument or on two instruments one of which is an

exact translation ofe the other, S-P analysis offers an interesting

alternative to the complex techniques for detection of biased items

generally in use. McArthur studied the response patterns for items on

the California Test .of Basic Skills, administered to both

-)
English-speaking and Spanish-speaking children, the latter taking the

CTBS-Espanol./ E-i176-h, when proportions of children achieving correct

responses to a given item differ between the two jariguage groups, the
;

item may n6t be biased. However, the 0* values for the

studeht-problem matrices calCulated.separately for the two groups

suggest that the Spanish-language group engaged in more random

responding than did their Ehglish-speaking counterparts. A.

significantly larger number Of items for the fromer group show 'that

those children above the P-curve (c4ildren who in a case of "symmetry"'

as defined earlier would be expected to do well) who gave the correct

response were frequentlyfewer in number than the corresponding sample

116
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from the English-language group. That is, deleting cases below the

P-curve, which are more 'likely to have engaged in random responding,

leaves a finite number of respondents for whom the prediction of

success is high. Obviously'qp easier items this reduced sample is

larger than for difficult items ,because of the shape of the P-curve.

, Nonetheless, while the p values for a given item may differ

significantly between one group and the other, tHe proportions of

right enswers aboVe the P-Icurves can be statistically...identical. To

establish evidence of bias, the additiooal requirement is that for

students in the disadvanitaged group who by their pattern of

performance on the test as a whole should have succeeded with a

particular item, that item generated erroneous responding for one

*

group more than for another.

.
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THE RASCH MODEL FOR' ITEM ANALYSIS

Bruce Choppin
Center for the Study of Evaluation, UCLA

1. Definition of the Kodel

The so-called Rasch model now widely employed for item analysgs,

is only one of a complete family of models described by Rasch in his

1960 text. All may be .propeay called "Rasch Models" since they share

, a common feature which Rasch labeled "specific objectivity". This ii

a property of most measurement systems which requires that the

comparison of any two ohjects_thAt--have been measured shall not. depend
-T

upon which measuring instrument or instruments were used. It is a
'-

familiar feature of many everyday pk/sical measurements (length, time,

weight, etc.). In the context of mental testing, it means that the

comparison of two individuals who have been tested should be

independent of which items were included in the tests. Traditional

test analysis based on-"true scores" does Ot havethis property since

"scores" on one test cannot be directly compared to "scores" on

another. (The peculiar virtues of specific objecti.vity and the

conditions needed to achieve it are discussed later in this chapter.)

Mathematical Representation

The Rasch model is a mathematical formulation linking the

probability of the outcome when a single person attempts a single item

to the characteristics oftheeperson and the item. It is thus one of

the family of latent-trait models for the measurement of achievement,

and is arguably the least complex membler of this family. In its

simplest form it can be written:.
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Av

Probability [Xvi =I] =
Av + Di

where, Xvi takes the value I if person v responds corred

to iteni i, and zero otherwise,

Av is a parameter describing the ability of person v,

and Di is a parameter describing the difficulty of item i.

In this formulation, A and D may vary from qi,t0 30. A

transformation of these parameters is usually introduced to-siipTy

much of the mathematical analysd_s_. This defines new parameters for

person ability (a) and item difficulty (6) to satisfy the equations:

d

Av = W and Di = W1 for some constant W.

tO

iT 0.7

t
0.6

a 0,5

0 4

-8 0.3

02

0.1

45 50 55 60
Ability in wits

65 70 75

F4ure I : Item Characteristic Curve (wits) for the Rasch Model
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A further simplification, introduced by Rasch himself and used

widely in the literature, is to fix the constant W to the natural

logarithmic base, e. In this case the mOdel can be written;

e
t

where t = ( ay 6i ).(2) Probability [Xvi = 1] =
1 + e

t

(111 this formulation, a and 6 can fake al)4eal values and measure

ability and: diffiiulty respectively on the same "logit" scale.

The sign of the expression ( a ) in any particular instance

indicates the probable outcome of the person-item interaction. If

a > 6 then the most probable outcome is a correct response. If

a< ES then the most likely outcome is an incorrect response. .

It should also be noted that the "odds" for getting a correcti

response (defined as the ratio of the probability for getting one

to the probability for not getting one) take on a particularly

4 simple form:

et

1 t+e
t

= e
Odds [Xvi= 1] 't

I

1 + e

or t = loge(odds)

For..this reason, the Rasch,model is sometimes referred to as the

"log-odds" model.

Alternative Units

As stated above, the model based on the exponential function

yields measures of people and items on a natural scale, whose unit

is called a "logit". Rasch himOlf used the model in this form,

.1
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and most of Wright's publications also make use of it. MathematiEally

and computationally the logit is convenient, but as an operational

unit it has two drawbacks. First, a change in achievement of one

logit represents a considerable amount of learning. Studies in

various'parts.of the World indicate that in a given subject area, the

typical child's achievement level would rise by rather less than half

a logit in a typical school year. In practice, many of the

differences in achievement level that we need to measure are much less

than this, as is the precision'yielded by our tests; so results are

commonly expressed as deciMal fractions rather than as integers.

4
Secondly, logits are usually ranged around a mean of zero (this

is a matter of convention rather than necessitY),so that half of all

the values obtained for parameters are typically negative. In

general, teachers dislike dealing with'negative-fflfters, and the

prospect of having to explain to an anxious parent what Jimmy's change

in math achievement from'-1.83 logits to -1.15 logits actually means

is too mud' for most of them.

The solution for practical applications of the Rasch scaling

technique's to use a smaller and more conveniedt unit. This is

accomplished by setting W to some value other than e. A number of

alternatives have.been suggested, but the unit in the widest use after

0.2 ,

the logit is obtained by setting W = 3 . This unit is known as the

"wit" in the United Kingdom and United States, and as the "bryte" in

Australia. Wits are typically centered'around 50 with a range from

about 30 to 70. One logit is equal to 4.55 wits. For,many purposes

-

123
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it is suffi4ent to report wits as integers. The particular value for W

is chosen so as to provide a set of easily memorized probability values,

as can be seen in the Table 1.

Table 1
The Relationship of Logits and Wits to the

Probability of Correct Response

- (S) Measured

in Logits
6) Measured

in Wits

Probability of a
Correct Response

-2.198 -10 0.10'

-1.099 -5 0.25 .

0 0 0.50

+1.099 +5 0.75

+2.198 +10 0.90

It must be emphasized that the choice of a unit for reporting is an :

arbitrary matter. Most of the theoretical work on the model, and all

the computer programs for parameter estimation in common use, work in

logits--translating to wits or some other scale for reporting only if

desired.

Analytic Posfiiies

Parameter estimation is a difficult issue in latent-trait

theories. That for Ratch model a variety of different,estimati.on

algorithms (at least ,s-ix) have become available in the last fifteen

years results:from the mathematical simplicity, of the Rasch formulation.
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The basic equation models only the.outcome of one particular

item-person interaction, but since it does so in terms of a

probability function, it is necessary to accumulate data from several

such interactions in order to estimate parameters or test the fit of

the model itself.

For example, the accumulation of responses of orie individual to a

set of items may be used to estimate the ability parameter for the

individual, and the pattern of.resprses by several individuals to two

items may be used to estimate the relative difficulty of the two

items. From a (persons-by-items) response matrix it is .possible to

estimate both sets of parameters (abilities and difficulties), and

also to check on whether the model is an acceptable.generating

function for the data. This calibration of items, and the test of

goodness-of-fit to the model, correspond to item analysis procedures

in classical test theory (but see section 5(a)).

Once items have been calibrated, equations can be developed to

predict the characteristics of tests composed of different samples of

previously calibrate0-4tems, or thb performance of previously measured

people on new items. Although the simplest approaih to statistical

analysis.requires a complete rectangular persons-by-items response

matrix, other procedures are available to handle alternative data

structures. For example, when a group of individuals take different

but overlapping tests, the persons-by-items matrix will necessarily be

incomplete, but it is still possible to calibrate the items and .

measure the people. An extreme example, in which a computer-managed

12;75"
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adaptive test is individually_tailored to each testee (suchithat the

next item given depends on the responses to previous items), may lead

to a situation in which every person tested may respond to a unique

set of items. If the items have been calibrated in advance, it is

possible to estimate the individual's ability parameter at each step

of the sequence, and to discontinue testing when the ability has been'

, measured with the desired degree of precision.

Estimation Techniques

Although this paper is not the place for a detailed 'presentation

of the algebraic manipulation involved in the various algorithms for

parameter estimation, an outline of the different approaches may be

helpful.

Conventionally the starting point is taken to be a rectangular

matrix of persons by items in which the elements are one if a

particular person responded correctly to the appropriate item, zero if

he.responded incorrectly, and blank if the person was not presented

with the item. Initially we shall restrict the discussion to complete

matrices of ones and zeros such as occur when a group of N 'people all

attempt a test of k items. In most applications N is usually much

larger than k Two summarizations of data contained in the N x k

matrix leads to effective strategies for parameter estimation (see

Figure 2).

One', known as the "score-group method" clusters together all

those persons who had a particular raw score, and then counts within

each cluster'the number of correct respotes ;0 each item. This
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Score

r 1

0

1

2

3

k -2

k-1

2 3 .

1

2

3

Persons
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items

1 2 3 . . .

X=1 (correct)

X=0(incorrect)

. . k

0 0 0 . .

nk nk nk

the number of people
in score-group j who
responded correctly
to iitem 1.

0

nk

-
P.=-# correct responses to item i.

2a.: Score-group Summarization

n
r

12?

item

123. item

ka*

o . .

the number of people
who responded
correctly to item i
and incorrectly to
item j.

2b : Pair-wise Item Summarization

Figure 2 : Data reduction strategies for Rasch,parameter estimation.
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produces a score-group by item matrix as in Figure 2A. The other

method considers the items two at a'time, and counts, for each pair the

number of persons who responded correctly to ti)e first but incorrectly

to the second. This is known as the "pair-wisen;approach and produces

an item by item matrix as in Figure 2B. (A parallel analysis

comparing the people two at a time can be developed theoretically, but

has found little ,ractical application.) 'Both the score-group and the

pair-wise approaches4are described by Rasch in his 1960 book, but

without the development of a maximum likelihood technique he was

unable to exploit them.

The score-group method produces a (k + 1) by k matrix, but since

raw scores of zero and k do not contribute to the estimation

procedure, the summary yields k(k - I) elements for,use in the

-\ estimation algorithm. The pair-wise approach results im a k by k

matrix in which the leading diagonal elements are always zero, so

again there are k(k - 1) elements in the summary on which the

estimation algorithm operates.

Analysis of score-group matrix to separate information on a and

6 and thus obtain fully conditioned estimates for both the item

' difficulty parameters and the abilities associated with membership of

score-group 1 through k - 1 is computationally demanding and

expensive. The bes-tailable Procedure has been programmed by

Gustafsson (1977), but, though mathematically elegant and

statistically sound, it is far too expensive for routine use.

126
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However, Wright has shown that estimates developed fromigthe margins of

the score-group matrix can be developed very easily using a maximum

likelihood approach. Though the simultaneous estimation of both a

and (5 sets of parameters introduces a bias, a simple explansion

factor AWied to the results can largely correct for this (Wright &

Douglas, 1977; Hab.6rmann, 1977), and this method is widely used in

practice. When the data are summarized in a score-group fashioh, they

are convenient for checking the assumption of equal discriminating

power between items and the tests of fit developed by Wright and Mead

'(1976) concentrate on this.

By contrast, the pair-wise approach separates information about

the 6's from infermation about the a's at the beginning. The matrix,

of counts summarized in Figure 2B has conditioned out all information

about variations in a , so that a fully conditional estimate of the

6's (either by maximum likelihood or'least squares) 'can be

obtained. The ability estiMates for each'individual are developed

'from eolving iteratively the equation:

a-6.

r - V W
0

i=l Wa-1

where r is the raw score of the person, and the summation.extends only

over those items that were attempted.
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The test of fit applied to the pair-wise summary matrix is,not

very sensitive to violations of the equal discrimination power

assumption (see section 3), but instead focuses on the iss.ue of local

independence between items (Choppin &.Wright, in progress). In

practice, therefore, the two approaches may be regarded as

complementary.

Though slower than the Wright estimation algorithm based on

score-group marginals, the pair-wise approach has the considerable

advantage of being.able to handle incomplete data matrices--

corresponding to all those applications In which not every person

attempts every item. It is thus of particular iiiterest,in such fields

as adaptive testing and item banki/pg (Choppin, 1978, 1982).

2. The Measurement Pilosophy and Primary Focus of Interest

Although it turns out f6lat the mathematical details have much in

common with those of "item response theory", Rasch derived his models

from a very different standpoint. In the first paragraph of the

preface to the book which launched his ideas on measurement (Rasch,

1960) he quotes approvingly an attack by B.F. Skinner on the

application of conventional statis.tical procedures to psychological

research.

"The order to be found in human and animal behavior

should be extracted from investigations into

individuals ... psychometric methods are inadequate for

such purposes since-they deal with groups of

individuals." (Skinner, 1956, p. 221)

130
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Group-centered statistics, which form the backbone of:.

conventional psychometric practice (factor analysis, analysis of

variance; etc.) require the clustering,of individuals into discrete

categories or populations, and further make assumptions about the

nature of variation within these categories which Rasch viewed with

grave distaste. The alternative was to develop methods which would

work with individuals.

"Individual-centered statistical technique§ require

models in which each indivtdual is characterized

separately and.from which, given adequate data, the

individual,parameters cln be estimated. It is further

essential that comparisons between individuals become

independent of which particular ins.trumints - tests, or

items or other stimuli - withim the class considered

have been used. Symmetrically, it ought.to tie possible

to compare stimuli belonging to the saTe--c-Tass -

measuring the same thing - independent'of which

particular individuals within the class considered were

instrumental for the comparison." (Rasch, 1960, p. vii)

In this excursion into what he later call4 "specific

objectivity", Rasch is echoing a theme developed explIcAly by

L.L. Thurstone three 6:ades earlier:

"A measuring instrument must not be seriously affected

in its measuring function by the object of

measurement. To the extent that its measurement

function is so affected, the validity of the instrument

is impaired or limited. a yardstick measured
differently_because of-t e fact that it was a rug, a

picture, or a piece of p per that was being measured, .

then to that extent the trustworthiness of that

yardstick as a measuring device would De impaired.

Within the range of objects for which the measuring

instrument is intended its function must be independent

of tbe object of measurement. " (Thurstone, 1928,,

p.547).

3.i
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Reliance on this form of analogy to the physical sciences is

quite characteristic of latent trait measurement theorists. Wright

(1968, 1977) also uses the yirdstick as a convenient metaphor for a

test item. Others (Eysenck, 1979; Choppin, 1979, 1982) have pointed%

out the similarities between the measurement of mental traits and the

measurement of temperature. The underlying premise is that although

psychological measurement maybe /rather more difficult to accomplish

than is measurement in,the fields of physics and chemistry, the same

gdneral principles should apply. Features which are characteristic of

good measurement techniques tn physics should also be found in the

fields of psychology and education.

Rasch himself draws out the similarity between the- development of

his model, and Maxwell's analysis of Newton's laws of-motion in terms

of the concepts force and mass (Maxwell, 1876). The second law links,

force, mass and acceleration in a situation(where although

acceleration and its measurement have been fully discussed, the

concepts mass and force are not yet defined. Rasch (1960, pp.

110-114) considers the necessity of defining the two concepts in terms

of each other, aod shows how appropriate manipulatjon of the

mathematical model (the "law") and the collection of suitable data can

lead to the (comparative) measurement of masses, and the (comparative,

measurement of forces_ He points out the close analogy to his

item-response model which links ability, difficulty and probability.

Ability and difficulty require related definitions since people need

"lb

tasks on'which to demonstrate their ability, and tasks only exhibit

their-difficulty when attempted by people. Since his model is

132



"specifically objective", data can be collected so that the two sets

of parameters are capable of separate estimation (as with force and

mass).

This approach to measurement is the primary focus of interest tor.

the Rasch model. Individuals are to be measured through the

estimation of parameters characterizing their performance. These

parameters shall be intcrpretable by comparison With the parameters

estimated for other individuals (as in norm-referencing) and/or in

conjunction with the parameter estimates for test stimuli (as in

criterion=referencing).

3. Assumptions made by the Rasch Model

The basic assumption a simple yet powerftil one that derives
a

from the requirement of specific objectivity, so central to Rasch's

thinkinR about measurement. It is that the set of people to be

'me'asured, and the set of tasks (items) used to measure them, can each

be uniquely ordered in terms respectively of their ability and

difficulty. (Ability and difficulty as already described.) This

ordering permits a parameterization of people and tasks that fits the

simple model defined in.section 1 above.

The bask-assumption has a number of important implications. One

such assumption is that of local independence. The probability of a

particular individual responding correctly to a particular item must

not depend upon the responses that have been made to the previous

133
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items. If it_did, then altering the sequence of items that mi4z, up a

particular test, would alter the ordering of people on the underlying

trait (in violation of the basic assumption). Similarly, local

independence requires that-the response of an individual to a

particular item is not affected by the responses given by other people

to the same item. If it were,.then it would be possible, by selective

clustering of people, to change the ordering of items in terms of

their difficulty (in violation of the basic assumption).

Another implication that follows from the basic assumption of the

model is sometimes st,ated (rather confusingly) as "equality of

discrimination". It must be emphasized th-at this does not mean that

4
all items are assumed to have equal point-biserial correlation indices

with total test score, or with some external criterion. Rather, it

means that the signal/noise ratio represented by the maximum slope of

the characteristic curve of each item is assumed toebe the same for

all items. If the slopes were not the-same, then at some point the

characteristic curves for two items would cross. This would mean that

the ordering of the items in terms of difficulty for persons of lower

ability would not be the same as the ordering for persons of higher

ability (see Figure 3). This again violates the basic assudiption.

13.1
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Figure 3

(a) Characteristic curves for items

'that fit the Rasch Model.

(b) Characteristic curves for two items

with different discriminations.

Uni-dimensionality is also a consequence of the basic

assumption. Iffe performance of people on a set of items depended

on their individual standing on two or morv latent traits, such that

the ordering of people on these latent traits was not identical, then

it would be impossible to represent the interaction of person and

task with a single person parameter for ability.

A further assumption and one which is mathematically very

convenient, albeit somewhat unrealistic (at least on multiple-choice

items), is that there is no random guessing behavior. The model

requires that for any test item, the probability of a successful

response tends asymptotically to zero as the ability of the person

attempting it is reduced (see Figure 1).

Similarly, there is a built in assumption, which has been Th

less carefully explored, that as the ability of the person being

considered increases, the probability of a successful response to any

given item approaches one.

136'
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4. Strengths and Weaknesses and Gaps in the Development

The strong features of the Rasch model when compared with other

measurement models are:

(a) The combination of specific objectivity, a'

property taken for granted in the field of
physical measurement, and the model's mathematical

simplicity.

(b) Deriving from this, the separability property
which permits the estimation of person-parameters
and item-parameters separately. -

(c) The existence of several algoretthms for Oarameter

estimation some of which are kxtremely fast and
which work well with small amounts of data.

(d) The Inbuilt flexibility of the system. As with

other latent.trait niodels which are defined at the

item level, there is no requirement that tests be

of a fixed length or contain the same items.

(e) The close parallels %that exist between the Rasch

model and the conventional practice of calculating

raw scoret based on an equal weighting of items.

Rasch models are the only latent-trait models for

which the raw score, as conventionally defined, is

a sufficient statistic for ability (and
correspondingly the raw difficulty or p-value of

an item is a sufficient statistic for Rasch

difficulty).

Against this it must be admitted that there are areas of,

considerable weakness. The most serious focuses on the assumptions

made by the model. These are, in general, too strong to carry full

credibility. In practice some real data appear to fit the model

rather poorly. The assumptions of local independence and of no

guessing (which are crucial_to the model) are not strictly met in

practice. Although the psychometrician may be able to reduce the

guessing problem through the avoidance of objective items, and may be

able to structure the test and the conditions under which it is
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administered to iMprove local independence, in real life situations

these problems are rarely completely eliminated. The model also

demands (as do most others) uni-dimenSionality (or, as Rasch calls it,

conformability), and while the items that comprise many existing tests

fail to meet this criterion, .the problem is less critical. If one has

control over the test co'nstruction phase of a measurement program,

then it is possible to build sets of items whiCh satisfy the

uni-dtmensionalit$ aisumption moderately'well.

One feature of the model which has been described as a weakness

(Goldstein, 1979; Divgi., 1981) is that it implies a unique ordering of

Items, in terms of their difficulty, for all individuals. This

appears not to be sufficiently sensitive to the effects of

instructional and curriculum variation,-efibi4tands, therefore, as an

important criticism (but see Bryce, 1981).

The seriousness with which such objections need to be considered

,depends upon the-nature of the measurement task being addressed. Most_
educational instruction programs aim at increasing the learning of the

student and thus at intreasing his ability to solve relevant test

items. We would usually expect the ability to solve all relevant test

items to increasebut the relative difficulty of the items could. (and

normally would) remain unchanged'. While this is the dominant goal of

instruction, the model can handle the situation appropriately, and the

occasional changes in relative difficuity brought about by alternative

curricula (see", for example, Engel, 1976 or Choppin, 1978) can shed

considerable light on the real effects of the instructtonal pKojram.

If, however-) a section of currictAlum is aimed specifically at b4aking

1 3 -/
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down smile piece of learning and replacing it with another (i.e. making

some items more difficalt to solve, and other easier) such as may

A occur during revolutionary changes in societL, then we may well feel
\

that the simple model proposed is inadequate to describe-Ithe

situation. In this case the items measuring the "old" learning and

Ake. "new" do not seem to belong on the same scale. Such

circumstances, however, are not routine in the United States.

Similarly, we find in general that the ordering of item

difficulties is the same with respect to all students. Where one

student differs significantly in finding some item much harder or

easier than predicted by the model, then we have valuable diagnostic

information about that individual (Mead) 1975). In practice we rarely

find evidence for such differences, and where they do occur the

interpretation is usually clear and direct (for example) the student

missed instruction ori a particular topic).- If we were attempting to

measure in an area where there was no common ordersing of item

difficulties for most students, then the model would appear quite

inappropriate. Such situations may be simulated by creating test

items whose solution depends upon luck or chance, but this is far

removed from pufsiye educational testing.

Experience over the last NO decades suggests that the

simplification made by the model in requiring a unique ordering of

-.items is met adequatelyin practice. Deviations, where they do occur,

are indicators of the need for further investigation (Dobby &

Duckworth), 1979; Choppin, 1977). There seems little reason-,

therefore, to regard this as a weakness of the Rasch approach.
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5. Aieas of Application

The basic form of the model proposed by Rasch, and described in

section 1, dealt with the sim-plified 'situation where Only twcpossible

outcomes of a person'attempting a test item were considered (i.e the

response is scored, "right" or "wrong"). For this reason, perhaps,

most of the applications so.far developed have been confined to the

use of "objective" test itegg for the measurement of achievement since

these are most naturally scored in-this fashiOn.

(a) Ittm Analysis

The most frequent application of the model has been for item.

analysis. Users have wanted to confirm that the model fits data they

have already accumulated for existing tests; they seek clues as to why

particular tests are not functioning as well as they shoUld; or-in the

construction of new tests they seek guidance as to which items to

include and which to omit.

It is probably true to say, however, that the Rasch modeT has not

proved particularly valuable,in any of these three roles. It can

detect lack of homogenity among items, but is probably less sensitive

to this than is factor analysis. It can identify items that do not

discriminate or for which perhaps the wrong score key has been

selected, but ft seems no more effective at this than is the more

traditional form of item analysis. Tt)2 exception to this

generalization probably comes when tests are being tailored for a very

-§-pecific purpose. Wright and Stone explore this in "Best Test Design"

(1979). Careful\-adherence to all the steps they outline would

,probably yield a tet with better characteristics for the specific

1 3
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and intended.purpose than would a test produced on the basis of only

traditional forms ,of iterranalysis and the crude criteria they employ.

(b) Scaling and Equating

A serioUs problem of traditional testing is that the "score"

produced Can only be interpreted in terms of the particular test

used. The development of norms for standardized tests is an attempt

to overcome this problem but this too has serious limitations. Latent

trait scaling has been used to tackle this question directly. With

the Rasch model, the raw scores on one test are mapped onto their

latent trait scale, and different tests can of course have their

scores mapped onto the same scale (provided always that the dimension

of ability being measured is the same). The Me-Uibd has been used to

compare "quasi-parallel" tests (e.g., Woodcock, 1973; Willmott &

Fowles, 1974); to link the tests given at different stages of a

longitudinal study (Engel, 1976; Choppin, 1978); and to check on the

4 standardization characteristics of batteries of published tests (Rentz

& Bashaw, 1976, 1977).

It should perhaps be noted that although equating using the Rasch

model appears more flexible than traditional procedures in'that only

the difficulty level of the two tests is being compared-and other

characteristics such as test length, the distribution of item

difficulties, etc. maybe quite different, there is an implicit

assumption that the "discrimination,power" (in the sense discussed

above) of the items in the two tests are comparable. As a.rule this

implies that the item types are similar. Attempts to use the Rasch

model to equate multiple choice and essay type tests on the same topic

have led to tnconsistent and bizarre'results (Willmott, 1979; Vincent,

1980). 14
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(c) Item Banking

Item banks take the equating of test scores to its logical limit

by calibrating all possible performances on all possible tests

composed of items drawn from a fixed set (the bank).

When a family of test items is constructed so that they
can be calibrated along a single comm9n dimension and

when they are employed so that they retairthese
calibrations over a useful realm of application, then a
scientific tool of great simplicity and far reaching
potential becomes availahle. The "bank" of calibrated
items can serve the composition of a wide variety of
measuring tests. The tests can be short or long, easy
or hard, wide in scope or sharp in focus. (Wright,

1980).

An item bank requires calibration, and although in theory there

are alternative approaches, in practice the Rasch model has proved by

far the most cost effective and is the most widely used (Choppin,

1979).

(d) Quality of Measurement.

An important development that is facilitated by latent trait

scaling is the calculation of an index to indicate the quality of

measurement for each set of test data, and if necessary for each

person attempting a test or for each item. The Rasch model, for

example, yields an explicit probability for each possible outcome of

every interaction of a person and an item. Where, overall, the

probabilities of the observed outcomes are too low we may deduce that

for some reason the Rasch model does not offer an adequate description

of a particular set of data. If the probabilitievare generally in

the acceptable range, but are low for a particular 'item, then we may

conclude that this is an unsatisfactory item. Perhaps it dOes not

discriminate, or is addressing some different dimension of

14
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achievement. If the probabilities are generally acceptable but are

low for a specific person, then we may conclude that this person was

not adequately measured by the test (perhaps he guessed at random, was

insufficiently motivated, or misunderstood the use of the answer

sheet). The reporting for this person of a low measurement quality

index would imply that the person's score should be disregarded and

that a retest is appropriate.

A recent Tension of this' approach involves trying to identify

withift the vector of item responses from a particular individual those

portions which provide reliable measurement information, on which

items (or groups of items) the subject appears to have guessed at

random, and how the total vector of responses may be selectively

edited in order to provide a more reliable estimate of the subject's

level of achievement.

6. Extensions to the Basic Model

Two types of adaptation and extension will be considered here.

The first centers arounethe notion of sequential testino in which

evidence of the level of ability of the subject is accumulated in

Bayesian fashion duriflg the test session ancrmay be used,to determine

which items are to be attempted at the next point of the sequence

and/or when to terminate the testing session. This approach relies

upon the existence of'difficulty calibrations for a pool or bank of

test items. Most of the reseach that has been done so far has
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employed computers to manage the testing session: to select items for

the subject to answer, to keep track of measurement quality, to

generate up-to-date estimates of the ability of the subject (together

with the appropriate standard errors) and to decide when the session

should be terminated. Wright and Stone (1979) point out that

individual people can do most of this for themselves if provided with

suitable guidelines and computational aids, and in many circumstances

making the learner responsible for evaluating his own learning is a

useful thing to do.

The second area of development from the basic Rasch model is in

the extension from'simple dichotomous scoring of items (right-wrong)

to a more complex,system. Two separate situations need to be

considered. The first is when an item is nOt answered completely but

enough is done to earn some partial credit. Data would then consist

of scores in the range 0 to 1 for each item. The other case is that

wh,ich typically occurs with rating scales or attitude measures when

the respondent is asked to choose one from among a finite number of

discrete categories, and each category contains information about the

standing of the respondent on some latent trait. Douglas (1982) has

considered the theoretical implications of generalizing the basic

Rasch model to include both these cases, and it turns out that almost

everything that can be done for dichotomous items can also be done for

these more complex methods of scoring. For the rating scale problem

both Andrich (1977) and Wright and Masters (1982) have found it

convenient to concentrate on establishing the lopation of thresholds



(the point at which the probability for reponding in one category

passes the probability of responding in the next one 7 Figure 4).

Wright and Masters have produced some interesting theorems about the

importance of these thresholds being properly ordered, and about the

spacing of thresholds that maximizes the information gained. There

have been few p i actical applications of this approach to date.

latent trait

Figure 4 : The Probability of Responding in Various categories.

For the analysis of "partial credit" data two computer programs

(CREDIT by Masters and POLYPAIR by Choppin) have been devised and'

applied to real data sets. The latter program, for example, was used

in the assessment of writing skills which forms part of the British

National Assessment Program.
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7. Points of Controversy

In some ways the Rasch model represents a revolutionary approach

to educational measureMent that discards many time-honored constructs
a

in testing theory (e.g., true score,)masurement error, and

reliability). On the other hand, it can-be viewed as providing a

comprehensive and sound mathematical underpinning for the conventional

practice of using raw scores, and shows that in most testing

applications raw scores are all that are required. From this point of

view^the Rasch model may be seen as less radical than other latent

trait models. Perhaps because the former view of the model was the

first to catch the imagination in the United States and has dominated

efforts to popularize it, it has been a subject of-continuing

controversy. The most strident arguments are not concerned with how

best to use the Rasch model, but whether or not its use is ever

appropriate.

To some extent the Rasch model has been central in the general

attack on latent trait theory as applied to the measurement of student

achievement. Goldstein (1979) who has led this atOcit. on the other

side of the Atlantic, stresses the fundamental difference between what

he regards as well-ordered traits such as aptitude and intelligence on

the one hand, and the complex pattern of behaviors that we call

educational achievement on the other. In his view it makes no sense

to apply any unidimensional model to the assessment of achievement.

Less extreme in their implications are the arguMents withfh the

-

latent trait camp about whether the Rasch (i.e., one-parameter) model

4
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is adequate for achieveme t testing, or whether a more complex

(usually three-parameter) m del is indicated.

It is important to diffe entiate two kinds of usage. One is in
40

test construction where in gene 1 the users of Rasch models appear to

be on firm ground in claiming tha a strategy to develop and select

items that conform to the Rasch mod I will produce better test

instruments than would other More Conventional strategies. The other

type of usage is concerned wit4 the analysis of existing test data

(for example, the massive data sets of NAEP or the accumulated files

of SAT material at ETS) where items are likely to be so varied (and in

many cases so poor) that it is comparatively easy to show that the

Rasch model is not appropriate. Devotees of the Rasch model react to

this by dropping the non-fitting items (which may well be the

majority) and working with those that are left--but this cavalier

approach does not commend itself to many researchers. If one is

inte-ested in analyzing and scaling data sets which include some

po$sibly very bad items, then something like the three-parameter model

is going to be needed.

This difference of emphasis among the areas of application has

its oriains in contrasting views of measurement philosophy. As the

next paper in this collection makes clear, the Rasch model can be

regarded as a special case of the three-parameter model when the

discrimination parameters are held equal, and the "guessing" parameter

is fixed at zero. Mathematically, this view is undoubtedly

correct--but philosophically, it is very misleading. Rasch developed

his model, in ignorance of Lord's seminal wo-rk on item characteristic
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curves, on the basis of a set of features which were necessary for an

objective measurement system. For measurements with the required

properties he found that his model, or a simple mathematical

transformation of it, was the mathematically unique solution. The

three-parameter model *that forms the basis of Lord's Item Response

Thoery is not, and cannot be, "specifically objective". Those whose

main interest is in understanding existing data sets, and therefore in

caetful modelibg of observed ICCs, seMittle benefit or relevance in

speific olijectivity. Those who wish to construct instruments to

measure individuals optimally tend to prefer the approach which offers

the stronger and more useful system. ICCs which"reflect the behavior

of inefficient or ineffective items have little interest for them. As

has been suggested earlier in this paper, the Rasch model supports a

range of applications which goes,well beyond what a latent trait model

that is not specifically objective can manage.

In the view of this writer, much of the energy which has fueled

professional arguments over which is the better model (and the many

research studies whose main goal was to compare the effectiveness of

the two mode\ls in exploring a particular set of data) stem from a

failure to aRpreciate that the two models are basically very

different, and were developed to answer different questions. Neither

is ever "true". Both are merely models, and it seems clear that in

ibme application's one is of more use than the other and vice versa.

Among users of the Rasch model there is little that is currently

controversial, due in no.small part to the dominance of two computer

programs now in use around the world (BICAL developed by Wright and
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his associates.in Chicago, and PAIR developed by Cftoppin in London).

One current issue that requires clarification concerns the status of

"tests of fit". It is generally conceded Rasch users that whereas

better tests of fit are avairable for the Rasch model than for most

other psychometric models, they still leave a lot to be desired. In

most cases, showing that an item does not fit the model-merely

requires collecting.a sufficiently large body of data. The area of

disagreement lies between those who prefer to treat fit/misfit as.a

dichotjaus categorization and draw up decision rules for dealing with

test data on this basis, and those who prefer to regard degree of

misfit as a continuous variable which needs to be considered in the

context of the whole situation. The present wri er belongs in the

latter camp, but is prepared to admit that many f the "rules of
\

thumb" that have been deyeloped lack much theoretical or empirical

basis.

14 d
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THE THREE-PARAMETER LOGISTIC MODEL1

Rorrald K. Hambleton
University of Massachusetts, Amherst

1. Definition and Background

In a few words, item response theory postulates that (a) examinee

.test performance can be predicted (or explained') by a set of factors

called traits, latent traits, or abilities, and (b) the relationship

between examinee item performance and the set of traits assumed to be

influencing item performance can be described by a monotonically

increasing function called an item characteristic function. This

function specifies that examinees with higher scores on the traits

have higher expected probabilities for answering the item correctly

than examinees with lower scores on the traits. In practice, it is

common for users of item response theory to assdme that there is one

dominant factor or ability which explains performance. In the

one-trait or one-dimensional model, the item characteristic function A-

is called an item characteristic curve (ICC) and it provides the

probability of exaMinees answering an item correctly for examinees at

different points on the abUity scale. In addition, it is common to

assume that item characteristic curves are described by one-, two-, or

three-parameters. The interpretation of these parameters will be

A

b described in section 3. In any successful application of item

1 LaboratorAt of Psychometric 'and Evaluative Research Report No. 126.

Amherst, MA: School of Education, University of Massachusetts,

1982. 5.4
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response theory, parameter estimates are obtained to describe the test

items, ability estimates are obtained to describe the performance of

the examinees, and there is evidence that the chosen item response

model, at least to an adequate degree, fits the test data set

(Hambleton, Murray, & Simon, 1982).

Item response theory (or latent trait theory, or item

characteristic curve theory as it is sometimes called) has becoMe a

very popular topic for research in the measurement field. There have

been numerous published research studies, tonference presentations,

and diverse applications of the theory in the last several years (see

for example, Hambleton et al., 1978; LOrd, 1980; Weiss, 1980).

Interest in item response models stems from two desirable features

which are obtained when an item response model fits a test data set:

Descriptors of test items (item statistics) are not dependent upon the

choice of examinees from the population of examinees for whom the test

items are intended, and ttm expected examinee ability scores do not

depend upon the particular choice of items from the total pool of test

items 0 which the item response model has been applied. Invariant

item and examinee ability parameters, as they are called, are of

immense value to measurement specialists.

Today, item response theory is being used by many of the large

test publishers, state departments of education, and industrial and

professional organizations, to construct both norm-referenced and

criterion-referenced tests, to investigate item bias, to equate tests,

and to report test score information. In fact, the various

applications have been so'successful that discussions of item response

theory have shifted from a consideration of their advantages and

152



-5.3 -

disq.avantages in relation to classical test models to consideration of ,

such matters as model selection, parameter estimation, and the

determination of model-data fit. Nevertheless, it would be misleading

to convey the impression that issues and technology associated with

item response theory are fully developed and without controversy.

Still, considerable progress has been made since the seminal papers by

Frederic Lord (1952, 1953). It would seem that item response model

technology is more than adequate at this time to serve a variety of

uses (see, for example, Lord 1980) and there are several computer

programs available to carry out item response model analyses (see

Hambleton & Cook, 1977).

The purposes of this paper are to address (1) the measurement

philosophy underlying item response theory, (2) the assumptions

underlying one of the more popular of the item respcinse models, the

three-parameter logistic model, (3) the strengths and weaknesses of

the three-parameter model, and present gaps in our knowledge of the

model, (4) several promising three-parameter model applic.ations, (5)

extensions and new apPlications of the model, and-(6) several

controversies.

2. Measurement Philosophy

There are many well-documented shortcomings of standard testing

and measurement technology.1 For one, the values of such useful item

statistics as item difficulty and item discrimination depend on the

i 'Standard testing and measurement technology" refers to commonly

used methods and techniques for test design and analysis.

-153



particular examinee samples in which they are obtained. The average

level of ability and the range of ability scores in an examinee group

influences the values of the item statistics, often substantially.

This means that the item statistics are only useful when constructing .

tests for examinee populations which are very similar to the sample of

examinees in which the item statistics were obtained. Another

shor,tcoming of standard testing technology is that comparisons of

examinees on an ability measured by a set of test items comprising a

test are limited to situations where examinees are administered the

same (or parallel) test items. But, a pkthlem is that many

achievement and aptitude tests are (typically) suitatle for

middle-ability 'students and so the tests do not provide very precise

estimates of ability for either high- or low-ability examinees.

Increased test score validity without any increase in test length can

be obtained if the test difficulty is matched to the.approximate

ability level of each examinee. But, when several forms of a test

which vary substantially in difficulty are used, the task then of

comparing examinees becomes more complex because test scores, only,

cannot be used. For example, two examinees who perform at a .50% level

on two tests which differ substantially.in difficulty cannot be

considered equivalent in ability, but how different are they in

ability? And, how can the ability levels of two examinees be compared

when they receive different scores on tests which vary in their

difficulty?

Another shortcoming of standard testing technology is that it

provides no basis for determining what a particular examinee might do

154



when confronted with a test item. Such information is<ftcessary, for

example, if a test designer desires to predict test score

characteristics in one or more populations of examinees or to design

tests with particular characteristics for certain'populations of

examinees. In addition to the three shortcomings of standard testing

technology mentioned above, standard testing technology has failed to

provide satisfactory solutions to many testing problems: For example,

the design of tests, identification of biased items, and the equating

of test scores. For these and other reasons, psychometricians have

been investigating and developing more appropriate theories of mental

'measurements.

Item response theory purports to overcome the shortcomings of

classical or standard measurement theory by providing an ability

scale on which examinee abilities are independent of the particular

choice of test items from the pool of test items over which the

ability scale is defined. Ability estimates obtained from different

item samples for an examinee will be the same except for measurement

errors. This feature is obtained by incorporating information about

the items (i.e., their statistics) into the ability estimation

'process. Also, item parameters are defined on the same ability

scale.7 They are, in theory, independent of the particular choice of

examinee samples drawn from the examinee pool for whom the item pool

is intended although errors in item parameter estimation will be group

dependent. More will.be said about this point later. Again, item

parameter invariance across samples of examinees differing in ability

is achieved by incorporating information about examinee ability level.s

into the item parameter estimation process. Finally, by deriving



standard errors associated with the ability estimates, another of the

criticisms of the classical test model can be overcome.

In summary, the goal of item response theory is to provide both

invariant item statistics and ability estimates. These features will

be obtained when there is a reasonable fit between the chosen model

and the data set. Through the estimation proceas, items and persons

are placed on an ability scale in such a way that there is as close a

relationship as possible between the expected examinee probabilities

for success on test items obtained from the estimated item a d,ability

parameters and the actual probabilities of performance for examinees

positioned at each ability level. Item parameter estimates and

examinee ability estimates are revised continually until the maximum

agreement possible is obtained between predictions based on the

ability and item parameter estimates and the actual test data.

The feature of item parameter invariance can be observed in

Figure 1. ,In the upper part of the figure are three item

characteristic curves (ICCs); in'the lower part are two distributions

of ability. When the chosen model fits the data set the same ICCs are

obtained regardless of the distribution of ability in the sample of

examinees used to estimate the item parameters. Notice that an ICC

provides the probability of examinees at a given ability level

answering each item correctly but the probabqity value does not

depend on the number of examinees located at the ability level. The

number of examinees at each ability level is different in the two

distributions. But, the probability value is the same for examinees

in each ability distribution or even in the combined distribution. Of

course suitable item parameter estimation will require a heterogeneous

distribution of examinees on the ability measured by the test.
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It is possible that to some researchers the property of item

invariance may seem surprising and unlikely to be obtained in

practice, but it is a property which is obtained whenever we study,

for example, the linear relationship (as reflected in a regression

line) between two variables, X and Y. The hypothesis is made that a

straight line can be used to connect tfie average Y scores conditional

on the X scores. When, the hypothesis of a linear relationship is

satisfied, the same linear regression line is expected regardless of

the distribution of X scores in the sample drawn. Of course proper

estimation of the line does 'require that a suitably heterogeneous

group of examinees be chosen. The same situation arises in estimating

the parameters for the item characteristic curves which are also

regression lines (albeit, non-linear).

3. Assumptions

When fitting an item response model to a test data set,

assumptions concerning three aspects of the data set are commonly made

(Lord, 1980; Wright & Stone, 1979); These three assumptions will be

introduced next.

Dimensionality. It is Commonly assumed that only one ability is
/

being measured by a set of items in a test. Of course, this

assumption cannot be strictly met because there are always many

_cognitive, personaltty,
and-test-taking factors which impact on test

performance,.at least to some extent. These factors might include

leVel of motivation, test anxiety, ability to work quickly, knowledge

of the correct use of answer sheets, and other cognitive skills in

addition to the dominant one measured by the set of test items. What



4#

:El
C13

0

.90

. 30

. 70

.60

.59

. 40

. 30

. 20

. 10

. 00

- 5.8 -

-3.0 -2.0 -1.0 0.0 tO
Abiny Scaie

Distribution A

2.0 3.0

\ Distribution B

\

Figure 1.

-2.0 -1.0 0.0 1.0 2.0 3.0

A diagram showing the independence of the
shape of item characteristic curves from the
underlying ability distribution.



-5.9-

is required for thiS assumption to be met adequately by a set of test,

data is, a 4dominant" component or factor which influences test

performance. This dominant component or factor is referred to as the

ability measured by the test. This is the ability on which examinees

are being mdasured. All other.contributing factors to test

performance are defined as errors.

Item response models in which a single ability is presumed

sufficient to explain or account for examinee performance are referred

to as unidimensional models. Those models in which it is assumed that

more than a single ability is necessary to account for examinee test

performance are referred to as multi-dimensional models. These latter

models are complex, and to date, not well-developed.

Principle of local independence. There is an equivalent

assumption to the assumption of unidimensionality known as the

assumOtion of the principle of local independence' (Lord & Novick,

1968; Lord, 1980). In words, the assumption requires that the

probability of an examinee answering an item correctly (obtained from

a one-dimensional model) is not influenced by his/her performance on

other items in a test. ,When an examinee learns information from one

test item which helps him or her on other test items the assumption is

violated. What the assumption means then is,ithat only the examinee's

ability and the characteristics of the test item related to the

dominant trait measured by the test influence performance.

Suppose we let uj be the response of a randomly chosen examinee

on iteMs j (j=1, 2, n), and uj=1, if the examinee answers the

1 Actually the equivalence only holds when he principle of local
independence is defined in the one-dimensional case.
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,-

item correctly, and uj=0, if the examinee answers the item

incorrectly. Suppose also we let the symbols, Pj, and Cij (Qj=1-Pj)

denote the probability of the-eXatiiinee answering the item correctly

and incorrectly, respectively. "Ilie assumption of the principle of

4_

local independence in mathematical"terms can then be stated ir the

following way:

Prob (U1 = ul, U2 = u2, , U = un)

pul n1-111 Du2 n1-u2 Dun n1-u

1 '2 '2 rn 'n

n LI; 1-ui
= n Q. ..,

j=1

In words, the assumption of local independence in the one

dimensional case requires that the probability of any response pattern

occurring for an examinee is given by the product of probabilities

associated with his/her successes and/or failures on the test items.

The probabilities are obtained from a one-dimensional model.

Mathematical form of the item characteristic curves. An item

characteristic curve is a mathematical function that relates the

probability of success on an item to the ability measured by the set

1

of items contained in the test. There is no concept comparable to the

notion of an item characteristic curve in standard test technology. A

primary distinction among different item response models is in the

mathematical form of the correspondilg item characteristic curves. It

is up to the user to choose one of the many mathematical forms for the

shape of the item characteristic curves. In doing so, an assumption

l u
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about the items is being made which can be verified later by how well

the chosen model "explains" the observed test results.

Each item characteristic curve for a' particular item response

model is a member of a family of curves of the same general form. The

number of parameters required to describe the item characteristic

curves in the family will depend on the particular item response

model. With the three-parameter logistic model, t istics which

correspond approximately to the notions of item dif iculty and

discrimination (used in standard testing technology), and the

probability of low-ability examinees answering an item correctly, are

used. The mathematical expression for the three-parameter logistic

curve is:
eDag(e -bg)

(1) Pg(e) = cg + (1-cg) ,

Da (e -b )

g=1, 2, ..., n,

i+e 9 9

where:

and

P ( 8) = the probability that anlexaminee with ability level e

answers item g correctly,

= the item g difficulty parameter,

\ an = the item g discrimination parameter,

co = the lower asymptote of an ICC representing the
. probability of success on item g for low-ability

examinees,

= 1.7 (a scaling factor),

= the number of items in the test.

161



The parameter cg is the lower asymptote of the item

characteristic curve and represents the probability of examinees with

low ability cOrrectly answering an item. The parameter cg is included

in the model to account for test response dataipt the low end of the

ability continuum, where among other things, guessing is a factor in

test performance. It is now common to refer to the parameter cg as

the pseudo-chance level parameter in the model.

Typically, cg assumes values that are smaller than the value that

would result if examinees of low ability were to guess randomly to the

item. As Lord (4974) has noted, this phenomenon can.probably be

attributed to the ingenuity of item writers in developing "attractive"

but incorrect choices. For this reason, cg is no longer called the

"guessing, parameter". To obtain the two-parameter logistic model from

the three-parrfirter lagistic model, it must be assumed that the

pseudo-chance level parameters have zero-values. This assumption is

most plausible with free respons'e items but itxan.often be

approximately met when a test is not too difficult for the examinees.

For example, this assumption may be met when competency tests are

administered to students following effective instruction. Perhaps the

most popular of the present item response models is the one-parameter

logistic model (or commonly named as the "Rasch Model" after Georg

Rasch the discoverer of the model). It can be obtained from the

three-parameter logistic model by assuming that all items have

pseudo-chance evel parameters equal to zero and by assuming all items

in the test are equally discriminating. Also, the one-parameter

model, or Rasch model as it is commonly referred to, can be produced

from a different set of measurement principles and assumptions.

Readers are referred to Choppin (in this volume) for an alternate

162
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development of the Rasch model. The viability of these assumptions is

discussed by Hambleton et al. (1978).

Item characteOstic curves for the latent linear model' and the

one-, two-, and three-parameter logistic models are shown in Figure

2. Readers are r4ferred to Hambleton (1979), Lord (1980), and Wright

and Stone (1979) kir additional information about logistic test

models.

4. Stren ths, Weaknesses, and Gaps_

The exploration of item response models and their application to

eductional testilng and measurement problems has been under study for

about fifteen yars now. Certainly there are many problems requiring

resolution but hnough is known about item response models to use.them

successfullx in solving many testing problems *(see Lord, 1980;

Hambleton, 1983). Item response models, when they provide an accurate

fit to a data set, and in theory, the three-parameter logistic model

will fit a data set more accurately than a logistic model with fewer

item parameters, can produce invariant item and ability parameters ,

described earilier. Some of these promising applications will be

described in the next two sections (also see, Hambleton, 1983).

On the negative side, the three-parameter model is based upon

several st7ong assumptions. (Of coure, the one- and two-parameter

logistic models are based on even stronger assumptions.) When these

assumptions are not met, at least to an approximate degree, desirable

1. TheOtem characteristic curves for the latent linear model are of

the/form:

Pg( e) = bg + ag e
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P (0) P (0)
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(a) latent linear curves (b) one-parameter logistic

r

curves

(c) two-parameter logistic CtliveS

0
cr--1

(d) thrloc-parameter logistic curves

Figure 2. Examples of item characteristic curves.



features expected from applying the three-parameter model will not be

obtained. Other weaknesses, presently, of the three-parameter model

are (1) the need of rather large numbers of items and examinees for-

proper item parameter estimation, (2) the relatively high computer,

?
costs for-obtaining item and ability parameter estimates, and (3)rthe

difficulties inherent in interpreting a complex model to teSt

practitioners:

On the first point, Lord (1980) suggested examinee sample sizes

in excess of 2,000 are needed. Perhaps Lord is overly conservative in

his figure but it does appear jhat sample sizes in excess of.600 or

700 agre needed, and a disproportionate number of examinees near the

lower end of the ability scale so that the c parameters Can be

estimated properly. Because of the required minimum sample sizes,

small scale measurement problems (e.g teacher-made tests) cannot

properly be addressed with the three-parameter model. With respect to

the second point, it is common to report high coses associated with

using LOGIST although there is evidence that the LOGIST prograM will

run substantially faster and cheaper on_some-computers. Hutten (1981)

reported an average cost of $69 to riih25 data sets with- 1,000

examinees rind 40 test items on a CYBER.17.5 ($800/hour for CPU time).

Finally, the untrained test developer will have difficulty working

with three statistics per item but as CTB/McGraw-Hill has shown -in

building the latest version of the 'California Tests of Basic Skills,

test editors can be trained to successfully use the additional

information provided by the three-parameter model (Yen, 1983).

There is (at least) one practical shortcoming of the three2

parameter model and its application: There does seem to be a
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shortage of available computer programs to carry out a three-parameter

logistic model analysis. The most readily available program is

LOGIST, described`by Wingersky (1983) and Wingersky, Barton, and Lord

(198?., The most readily available version of this program runs on

IBM equipment although there'is evidence that the program may run

substantially faster on other computers. Additional inveStigatiOn of

\- this finding is needed along with on-going +dies to try and speed up

the convergence of dstimates. In addition, there may be other ways to

improve the estimation process. Swaminathan and Gifford (1981) have

I

obtained very promising results 'with Bayesian item and ability

'parameter.estimates. Their results compare favorably with results

from LOGIST and they cante obtained considerably faster and more

cheaply than the same estimates obtained with LOGIST.

There are (at least) three areas in which we lack full

understanding of item response models. First, additional robustness

studies with the one- and two-parameter logistic models are needed and

with respect to a number of promising applications. What is the

practical utility of the three-parameter model in comparison to the

one- and two-parameter models? Second, appropriate methods for

testing model assumptions and determining the goodness of fit between

a model and a data set are needed. Hambleton and his colleagues

(Hambleton, 1980; Hambleton, Murray, & Simon, 1982) have made 'a

promising start by organizing many of the present methods and

developing several new ones. Much of 6eir work involves the use

graphs, replications, residual analyses and cross validation

procedures. More work along the same general lines would seem

1Fj
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desirable. Third, there is a great need for persons to gain

experiences with the three-parameter model and to share their new

found knowledge and experiences with others.

5. Applications1

In this section, several promising applications of the

three-parameter logistic model will be described briefly: Item

banking, test development, criterion-referenced_iesting, item bias,

and adaptive testing. Other applications of the three-parameter model

Are discussed by Hambleton et al. (1978), Lord (1980), and Hambleton

(1983)-

Item banking. The development of criterion-referenced testing

technology has resulted in increased interest in item banking

(Choppin, 1976). An item bank is a collection of test items, "stored"

with known item characteristics. Depending on the intended purpose of
A

the test, items with desired characteristics can be drawn from the

bank and used to construct a test with known properties. 'Although

classical item statistiCs (item difficulty.and discrimination) have

been employed for this purpose, they are of limited value for

describing :the items in a bahk because these statistics are dependent

on the particular gr.oup used in the item calibration process. Latent

trait item parameters, however, do not have this limitation, and

consequently are of much greater use in describing test items in an

item bank (Choppin, 1976). The invariance property of the latent

trait item parameters makes it possible to obtain item statistics that

are comparable across dissimilar groups. Since the itemrparameters

depend on the ability scale, it is not possible to directly compare

161
1 Some.of the materIal in thiS.section is taken from and/or edited

from a paper by Hambleton (1978)4
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latent trait') em parameters derived from differnt groups of examinees

until the ability scales are equated in some way. Fortunately, the

problem is not too hard to resolve since Lord and Novick (1968) have

shown that the item parameters in the two groups are linearly

related. Thus, if a subset of calibrated items is administered to

both groups, the linear relationship between the estimates of the item

parameters can be obtained by forMin_two-lep-aFate bivariate plots,

one establishing the relationship between the estiMates of the item

discrimination parameters for,the tivo groups, and the second, the

relationship between the estimates of the item difficulty parameters.

Having established pie linear relationship between item parameters

common to the two groups, a prediction equation can then be used to

predict item parameters for those ttem's not administered to the first

group. In this way, all fteri parameters can be equated to a common

group of examinees and corresponding ability scale. One large test

publishing company, the California Test Buread/McGraw-Hill, presently

customizes tests for school districts wift items calibrated,using the

three-parameter logistic model.,

Test development. The three-parameterjrodel is.presently being

used by a number of organizations in test development (e.g.,

CTB/McGraw-Hill, ETS). The three-parameter model provides the test

developer with not only sample invariant item parameters but also with

a powerful method of item selection (Birnbaum, 1968). This method

involves the use of information curves, i.e., items are selected

depending upon the amount of information they contribute to the total

amount of information supplied by the test (Lor, 1980)1. One of the

I,Readers are referred to Hambleton (1979) for an introduction to item
and test information and effictency curves.

4

1 f;
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bp
useful features of item information curves is that the contribution of

each item to the test information function can be determined without

knowledge of the other items in the test. When standard testing

technology is applied the situation is very different. The

contribution of any item to such statistics as test reliability cannot

be determtned independently of the characteristics of all the other

itemsin the test.

Lord (1977) outlined a procedure for use of item infprmation

curves to build a teSt to meet any desired set of specifications. The

procedure employs a pool of calibrated items, with accompanying

information curves, such as might be obtained from the item banking

methods described earlier. The procedure outlined by Lord consists of

the following steps:
(-

1. Decide on the shape of the desired test information curve.

Lord (1977) calls this the target information curve.

2. Select items with item information curves that will fill up

the hard-to-fill areas under the target information curve.

3. After each item is added to the test, calculate the test

information curve for the selected test items.

4. Continue selecting test items until the test information

curve approximates the target information curve to a

satisfactory degree.

An example of the applicatiori of this technique to the development of'

tests for differing ranges of ability (based on simulated data) is

givenv-by Hambleton (1979).

a



Criterion-referenced testing. A principal use of a criterion-

referenced test is to estimate an examinee's level of mastery (or

"ability") on an objective. Thus, a straightforward application of

the three-parameter model would produce examinee ability scores.

Among the advantages of tt.. application'would be that items could be

sampled (for example, at ranpm) from an item pool for each examinee,

and all examinee abillity estimates would be on a common scale. A

potential problem with this application, however, concerns the

estimation of ability with relatively short tests.

Since item parameters are invariant across groups of examinees,

it would be possible to construct criterion-referenced tests to

"discriminate" at different fevels of the ability continuum. Then, a

test developer might select an "easier" set of test items for a pre-'

test than a posttest, and still be able to measure "examinee growth"

by estimating examinee ability with the three-paramete model at each .

test occasion on the same ability scale. This cannot be done with

classical approaches to test development and test score interpreta-

tion. If we had a good idea of the likely range of ability scores for

the examinees, test items could te selected so as to maximize the test

information in the region of ability for the examinees being tested.

The optimum selection of test items would contribute substantially to

the precision with which ability scores were estimated. In the case

of criterion-referenced tests, it is common to observe substantially

lower fest performance on a pretest than on a posttest; therefore, the

test constructór could select the easier test items from the domain of

items measuring an objective for the pretest and more difficult items
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k
could be selected for the posttest. This would enable the test

constructor to maximize the precision of measurement of each test in

the region of ability where the examinees would most likely be

located. Of course, if the assumption about the location of ability

scores was not accurate, gains in precision of measurement would not

be obtained.

The results reported in Tables 1 and 2 (from Hambleton, 1979)

.
show clearly the advantages of "tailoring" a test to the ability level

of a group. Of course, the potential improvements depend on the

validity of a test developer's assumption about the examinee ability

distribution. If he or she uses an incorrect prior distribution as a

basis for desighing a test, the resulting test will certainly not have

the desired characteristics.

Item bias. Identifying biased items in a test usually involves

comparing the performance.of the subgroups of interest (e.g., Blacks,

Hispanics, and Whites) on the test items. The problem that a*rises is

thgt differences among 7,1e subgroups due to bias is confounded with

any true differences in abilities am g the subgroups. Needed is an

item,bias detection method that canil?ontrol for true ability

differences. Via a three-parameter model analysis, it is possible to

compare corresponding item characteristic curyes. At each ability

level, independent of the proportion of examinees in each subgroup who

are located at the ability level, the expected proportion of successes

in each subgroup,obtained from the ICCs, can be,compared. The ICCs

estimated in each group, in theory, do not depend upon the underlying

ability distributions. Any differences in the curves, beyond the

171



Table 1

Test Information Curves and Efficiency for Three Criterion-Referenced
,Test Designs From a Domain of Items of Equal Discrimination .

and Pseudo-chance Levels Equal to .20

Ability
Level

Test Information
"Wide Range

Form" "Easy Form"

Curves
"Difficult

Form"

,

Efficiency (Relative to
the "Wide Range Form")

"Easy Form" "Difficult Form"

Change in Effective
Test Length

"Easy Form" "Difficult Form

-3.0 .22 .36 .07 1.63 .31 63% -69%

-2.0 .86 1.31 .36 1.53 ,42 53% -58%

-1.0 2.08 2.81 1.31 1.35 .63 35% -37%

0.0 3.04 3.29 2.81 1.08 .92 8% , -8%

1.0 2.76 2.28 3.29 .82 1.19 -18% 39%
\

,

2.0 1.69 1.12 2.28 .66 1.35 -34% 35%

3.0 .79 ,46 1.12 .59 1.42 -41% 42%
4



Table 2

Test Information Curves and Efficiency for Three Criterion-Referenced Test

Designs From a Domain of Items with Varying Discrimination Indices

and Pseudo-Chance Levels Equal to .20

Ability
Level

Test Information
"Wide Range

Form" "Easy Form"

Curves
"Difficult

Form"

Efficiency (Relative to
the "Wide Range Form")

"Easy FO?m" "Difficult Form"

Change in Effective
Test Length

"Easy Form" "Difficult Form

-3.0 .24 .37 .08 1.58 .35 58% - -65Z

-2.0 .86 1.27 .37 1.48 .44 48% -567

-1.0 2.02 2.71 1.27 1..35 .63 35% -37%

0.0 2.94 3.18 2.71 1.08 4
.92 8% -8%

1.0 2.65 2.16 3.18 .81 1.20 -19% 207.

2.0 1.59 1.06 2.16 .67 1.36 -33% 36%

3.0 .75 .46 1.06 .61 1.41 -39% 41%

17u



usual sampling errors, can be attributed to differential subgroup

responses to the items, i.e., bias. It is becoming routine practice

for several large test publishers to investigate bias in test items

with the aid of the three-parameter logistic model. Since the

three-pararoeter model often provides a somewhat better fit to test

data at the lower end of the ability continuum (Hambleton et al.,

1982) than less general logistic models, the three-parameter model may

be more useful than other logistic models for studying bias.

Adaptive testi'ng. Possibly the first and most well-developed

application of the three-parameter logistic model to date is adaptive

testing (Lord, 1980; Weiss, 1980). In adaptive testing each examinee

is administered a set of test items "tailored" or "adapted" to his/her

ability level. Clearly, total test scores'cannot provide an adequate

basis upon which to compare examinees. Some examinees will be

administered sets of test items which are substantially more difficult

(or easier) than the test items administered to other examinees. By

calibrating test items using the three-parameter logistic model in

advance of the actual testing, and using the three-parameter model to

estimate examinee ability levels, examinees can be compared even

though the test items administered to different examinees may differ

substantially in difficulty. Because of the ready availability of the

computer, scoring difficulties associated with the use of the

three-parameter model can be overcome easily.

Thre U.S. military is firmly committed to the'use of adaptive

testing with the three-parameter model in many of its testing

programs. Presently affeasibility study is'being conducted along

1 7t;
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with the preparation of plans for adaptive testing implementatpn and

evaluation of the total adaptive testing system.

1

6.1 Possible Extensions/New Applications

I
Numerous researchers are presently addressing the development of

n4 item response models. For example, Samejima (1979) is exploring

t4 development of multidimensional models in which item options are

rahked based on their relationshi to ability, and characteristic

:ie.curves are produced for each op ion. McDonald (1982) has providqd a

general formulation fOr gener ting a wide range of multidimensiohal

linear and non-linear polyc otomous item re'sponse modelsl Bock,

vy, and Woodson (1982) have described a two-parameter item
1

4sponse model which can handle continuous data and where the unit of

,

ahalysis can be a group (e.g., the classroom or a school). Itit*Lmodel

\

will Ue especially useful in program evaluation investigations. A

minor variation of the three-parameter mod(11 which appears to have
/

Some utility is a model in which a common value of the c parameter is

used for all test items (Wingers'ky, 1983). This revised

three- arameter model will receive some use in the coming yeaq. A

four-parameter logistic model has also been suggested (the fourth

parameter is the upper asymptote) but it appeari to have very limited

practical usefulness. All of these new models can be vtewed as

modifications/extensions of the three-parameter logistic model and

they will undoubtedly receive study from researchers in the coming

year§.

Because of the newness of the IRT area, all applications of the

three-parameter model might legitimately be classified as new. For

the purposes of this paper, "new applications" will be those which to



date have not been published. Two new applications, then, of the

three-parameter model to the problems of item selection (Ham6leton &

de Gruijter, 1983) and score prediction (Hambleton & Martois, ,1983)

will be described briefly next.

Item selection. Item respanse models appear useful to the

problem of item selection because they lead to item statistic$ which

00 ;ri

-are referenced to the same scale on which examinee abilities are
1

,--

defined, In addition, it should be noted that IRT----provides a '

i

procedure for placing a cut-off scare whi-cti- is normally set on a
,.,

, )

.

,---
.

proportion-cort)ect scale define oVer a domain of items on the same

scaTe as the test items and the examinees (Lord,, 1980). Therefore,

I .

the usefulness of a test item for measurement at a7y point on the

ability scale can be assessed.

Hambleton and de Gruijter (1983) described a iine step procedure

for selecting test.items using three-parameter model item statistics,

and via a computer simulation study showed t'the advantages, at least in

the absence of errors associated with item parameter estimates, of .

...item selection with the aid of IRT over a standard item selection

procedure.

Test score predictions. The concept of item banking has

attracted considerable interest.in recent years from school-districts,

state departments of education, and test publishing companies. When

item banks consist of test items which are technically sound and

validly measure the objectives or competencies to which they are

referenced, the task of producing high quality tests is made

considerably eastier. Item banks are most often used to construct
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criterion-referenced tests (CRTs) or mastery tests or competency

tests, as they are sometimes called. What is not'commonly available

for use with these CRTs are derived scores such as percentiles.

Derived scores are not always valued but on occasion they are required

by school districts who receive federal funds (e.g., Title I) forpthey

must evaluate their funded programs with national norms (e.g.,

percentile scores).

In theory, the problem faced by school districts who require

information fur (I) diagnosing and monitoring student performance in

relation to comloetencies and (2) normative scores for the comparison

of examinees is easy to solve. Teachers can use their item banks to

build classroom tests on an gas-needed" basis, and when the need

arises, they can administer any necessary commercially a'ailable

standardized norm-referenCed tests. But this solution has problems:

(I) the amount of testing time for students is increased, and (2) the

financial costs of school testing programs is increased. On the other

hand, when testing time is held constant, and norm-referenced tests

are administered', there is less time available for instructionally

relevant testing (i.e., CRTs). A more satisfactoryklution would

allow teachers to administer test items measuring objectives of

interest in their instructional programs, and at the same time, allow

for normative scores to be estimited from the test items which are

administered. An often used solution of selecting a norm-referenced

test to provide normative scores and criterion-referenced information

through the interpretation of examinee performance on an item by item

basis is not very suitable criterion-referenced measurement and will

not insure that all competencies of interest are measured in the test.
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Hambleton (1980) suggested a possible item response model

solution to the problem of providing both instructonal information and

normative informatiOn from a single test. A latent.ability scale to

.which a large pool -of test items are referenced can be very useful in

obtaining normative scores from tests constructed by drawing items

from the pool. A norms table can be prepared from the administration

of a sample of items in'the pool. Then the norms table can be used

successfully with any tests which are constructed by drawing items

from the pool. Local norms can be prepared!by districts who build

.their own item banks. A test publishing company probably would

yrepare national norms for selected tests constructed from their item

banks.

Hambleton and Martois (1983) recently finished a study in which

it was found that bOth the one- and the three-parameter logistic

models resulted in excellent predictions of how examinees performed on

a norm-referenced test. Predictions were made from tests with items

that were easier, comparable to, or harder than items in the normed

test. Similar results were obtained in three subject areas at two

grade levels. Further research along the same general lines seems

highly detrable because of'the importance of the problem area.

7. Controversies

Perhaps like any emerging area, item response theory has

generated considerable controversy and strong emotional feelings in

support of one model versus another. Much of the debate has centered

on the choice between the one- and three-parameter logistic models.

There has also been some controversy surrounding the utility of



- 5.29 -

Bayesian estimators (Samejima vd;sus Novick and Swaminathan) and the

appropriateness of item response models for the analys'is of aptitude'

versus ach-ievement-tests. On this latter point there is some feeling

that items on achievement tests are instructionally sensttive and

therefore item response model statistics will not be invariant in pre-
,

and post-instructional groups.

With respect to the choice of the cne- versus the three-parameter

logistic,model, a number of questions have arisen:

1. What is the effect of boundary constraints place4 on item

and ability.parameter es:timates obtained with LOGIST?

2. ,What is the practical utility of the three-parameter model?
In most practical settings, won't the two models produce

highly similar results?

3. What is the additional cost of running a 4ree-parameter
model analysis and is the practical utilitA of the gains .

that accrue worth the financial costs and fh6 added

complexity Which results?

4. Since examinees can guess the answers to multiple-choice

test items, the three-parameter model should be selected on

the basis of this a priori consideration (Traub, 1983).

5. How well do the item response models fit any data sets?

This point is in dispute because , -many ofcthe present

goodness of fit statistics have been found to-be

ihappropriate (e.g., see papers by Wollenberg, 1980; Divgi,

1981).

These and other questions will undoubtedly be addressed in the coming

years. Answers will contribute to our knowledge of the three-

parameter logistic model and the situations in which the model should

be used.
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MEASURING ACHIEVEMENT WITH LATENT STRUCTURE MODELS

Rand R. Wilcox
Center for the Study of valuation

Universit of California, Los Angeles

1. MEASUREMENT PHILOSOPHY

The basic assumption in latent class models designed to measure

achievement is that an examinee can be described as knowing or not know-

ing the answer to a test item, and that inferences about an examinee's

ability level should take this notion into account.TEe goals of an

n-item test might be to determine how many of the items an examinee knows,

which items are known or which are not known, or what proportion of items

among a domaih of *ems are known. The problem is that examinees might

give the correct response when they do not know, or they might carelessly

give the wrong response when they know. Latent class models are an at-

tempt to measure and correct the effects of these errors when addressing

a particular measurement problem. Even if some other model is ultimately

preferred, such as a latent trait madel, latent class models are poten-

tially useful.

Currently it appears that correcting for guessing is more important

than might have been expected. Moreover, assuming random guessing seems

to be an unsatisfactory solution. Consider, for example, the problem of

determining the length of a criterion-referenced test where the goal is

to determine whether an examinee's percent correct true score or domai

score, p, is above or _elow some known constant p0. If p0=.8 and n=29

items are used, the probability of correctly determining whether p>p0 is at

least .9 when p>.9 or p<.7, and when the binomial error model is assumed.

If random guessing is assumed, nearly 200 items are needed (van den Brink

and Koele, 1989), and is one allows for the possibility that.guessing is

not at random, over 2,600 items are required to attain the same level of

s;,
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accuracy (Wilcox, 19'80). In some cases guessing might be nearly random,

but there is empirical evidence that this is generally not th'e case

(Coombs et al., 1956; Bliss, 1980; Cross and Frary, 1977; Wilcox, 1982a,

1982b).

Another way of describing the measurement philosophy of latent class

models is that an examinee's test score is a function, in part, of the

distractors that are used, and that it is importamt to take this effect

into ac.:ount. In the past this problem was ignored, probably because

there were no reasonable ways of dealing with lt, and because it was not

1

clear just how serious this problem was. Now, however, there are several

ways of measuring and correcting the effects Of distractors. It might

appear that some latent trait models_deal with guessing, but in fact
ft

latent trait models ignore the errors that are of concern here. Thus,

these errors might have a serious effect on how latent trait models are

used and interpreted. Wainer and Wright (1980) as well as Mislevy and

Bock (1982) examined certain aspects of how guessing affects latent trait

models, but the type of guessing examined here is different.

2. THE MODELS AND THEIR ASSUMPTIONS

Generally latent class models are based on assumptions about how

examinees behave when responding to an item, or how items are related

to one another or the manner in which tests are administered. While

a general descrfption of latent class models is possible, such a des-

cription is not given here. Instead attention is focused on those models

that seem to have the most practical value.
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A Latent Structure Model for Answer-Until-Correct Tests

This section assumes that an examinee responds to a multiple-choice

test item according to an answer-until-correct (AUC) scoring procedure.

This means that if an examinee chooses an incorrect response, another
a'

response is chosen, and this process continues until the correct response

is identified.

AUC tests are easily administered in the classroom using especially

designed answer sheets where the examinee erases a shield corresponding

to a particular afternative. (These answer sheets are available commer-

cially, for example, through Van Valkenburg, Nooger and Neville in New

York, N.Y., and they are relatively inexpensive.) If the letter under

the shield indicates an incorrect response, the examinee erases another

shield, and this continues until tne correct shield is erased.

Consider a population of examinees, and let ci be the proportion

of the examinees who can eliminate i distractors from consideration.

That is, because of partial information, some of the examinees will rule

out some of the distractors without knowing the correct response. If

there are t alternatives from which to choose, and if the examinee can

eliminate t-1 distractors from consideration, the examinee is said to

know the correct response. Thus, is the probability that a randomly

sampled examinee knows the correct response. Note that no distinction is

made between examinees who can eliminate a distractors via partial

information and those that know. In other words, an examinee might choose

the correct response, not because the correct answer is known,but because
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the test constructor was unable to produce at least one effective distrac-

tor. Thus, it is assumed that at least one effective distractors is being

used, and presumably this problem can be minimized by choosing t to be

reasonably large. Of course the crucial step is finding someone who can

write effective distractors.

As alluded to earlier, it is assumed that among the examinees who

do not know, some might be able to eliminate one or more distractors from

consideration via partial information. It is further assumed that once

these distractors are eliminated, the examinee guesses at random among

the alternatives that'remain. Hence, if pi is the probability of a correct

response on the 1-
th attempt of the item Ci=1,...,t),

'N t-

P. = c./(t-j)
j=0

For example, if t=3 /
/

and

PI C0/3 4- Cl/2 C2

P2 C0/3

P3 CO/3

.1
(2.0)

In general, the proportion of examinees who know the,correct response is,

Ct-1 PI 132.

The model implies that

PI P2 ..'Pt'

(2.1)

(2.2)

and this can be tested by applying results in Robertson (1978). Empirical

investigations (Wilcox, 1982a, 1982b) suggest that (2.2) will usually hold.

"0 111,
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The next section describes how one might proceed when (2.2) appears to

be unreasonable.

For N randomly sampled examinees, let xi be the number who get the

correct response on the i-
th

attempt. Then the xi 's have a multinomial

N (N
distribution give by (

x
) p

1

x
1

. p

x
t

t
where (

x
i = N!/(x 1 ... xt!),

Z x. = N, 0,< p. < 1, and p. = 1. An unbiased maximum likelihood es-
i - i - i

timate of pi is just xi/N, and so

c
t-

= (x
1

- x
2
)/N (2.3)

is a maximum likelihood estimate of c
t-1'

the proportion of examinees

who know the correct response. Semantically, if we compute the propor-

tion of examinees who get the item correct on the first attempt, and then

subtract the proportion who get it right on the second attempt, we have

an estimate of the probability that the typical exaffinee will know the

answer.

(/
Note that given by (2.3) can be negative, but c is positive

when the model is assumed to be true. This can be corrected by simply

estimating 'ct..1 to be zero when ct_i < 0. From Barlow et al. (1972), a

maximum likelihood estimate of c under the assumption that (2.2) holds

can be had by app1S/ing the pool-adjacent-violators algorithm.

A Misinformation Model

The previous section assumedIthat the inequality in equation (2.2)

is true, but experience indicates that occasionally this will not be the

case. In this event a misi4nformatio.1 model may be appropriate. Of course
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%

for some items an investigator might suspect a misinformation model is

needed before any test data is collected in which case the results in

this section might be applied without testing (2.2).

As will soon become evident, there is no specific misinformation

model, but rather a class of models that might be used. fhe choice

from among these models will depend on what seems to be a reasonable

assumption about how examinees behave. At the moment there are no em-

pirical ffi-ocedures to aid a test construci.or when choosing from among

the various misinformation models. So far, however, this does not seem

to be a serious problem.

To better understand how to apply these models, consider the follow-

ing test item.

When a block of iron is heated until it is red hot, it

get5 bigger. If the iron weighs 20 lbs. at room temper-

ature, how much will it weigh when red hot?

1) d9.8 lbs. 2) 20 lbs. 3) 20.1 lbs. 4) 20.5 lbs.

5) 20.61 lbs.

This item is,similar to one investigated in Wilcox (1982b) where the ex-

aminees were approximately.14 years old. The point is that it seems rea-

sonable to suspect that some examinees will choose from among the last

three alternatives because they believe the iron weighs more when it expands.

The goal then is to devise a model that takes this behavior into account.

In this section it-is assumed that the examinees belong to one of

three mutually exclusive groups: 1) they know the item, 2) they have

misinformation, 3) or they do not know, do not have misinformation, and

guess at random. For examinees with misinformation, it is also assumeJ

that they will choose c spec c incorrect alternatives before choosing

the correct response. At the moment there is no empirical method for

choosing this must be done baed on what seems reascrable for the item

\`
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(

being used. For example, in the item described above, c=3 would be con-

sidered. In some cases the resulting latent structure model can be

,checked with a goodness-of-fit test, but as will be s/een this is not

always the case.
\

For the population of examinees being.tested, let c be the propor-

-Lion of examinees who kno
1
be the proportion who do not know, do not

have misinformation and gu ss at random, and let v2 be the proportion

who have misinformation. I\f an AUC scoring procedure is used, and if

pi is defined as Oefore, then for c=3 and- t=5

P1 C + v1/5
(2.4)

P2 v1/5
(2.5)

P3 v1/5
(2.6)

P4 v2 -I- v1/5
(.2.7)

P5 v1/5
(2.8)

Thus, c = pl-p2 as before and is estimated with (x1-(x2 + x3 + x5)/3)/N.

The model can be tested with the usual chi-squre test, and it gave a good

fit to the/data in Wilcox (1982b

and

More generally, for arbitrary c,

P1 4-v1/t

Pc+1 v2 "1/t

pi = vi /t, i 1, c + 1 .



6.8

Slignt generalizations of the model may be possible. Suppose, for

example, c=3.and t=5, as in equations (2.4)-(2.8), but for examinees with

misinformation, let v3 be the proportion of examinees who choose the cor-

rect response once c=3 alternatives are eliminated. Then p5 and p4 take

the mOre general form

P4 Y3v2 vl/t

and

(2.12)

p5 = (1-v3)v2 + yt (2.13)

Now however, a goodness-of-fit test is no longer possible because there,

are zero degrees of"freedom.

Equivalent 11c1 Hi2rarchically Re)ated Items, and Related

Latent Structure Models

f

In recent years, several investigators have proposed models

based on the notion of equivalent or hierarchically related itemSr. Two

items are said.to be equivalent if examinees know both or neither one.

IF in addition, there are examinees who know the first but not the second,

the items are hierarchically related. As argued by Molenaar (1981),

\
clearly there are situations where it may be difficult or impbssible to

generate eqivalent iteffts However, experience suggests that there are
,

7.
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situations where one of these assumptions might be ree.sonable (e.g.,

Macready and Dayton, 1977; Harris and Pearlman, 1978; Harris et al., 1980).

It should be mentioned that in some instances a test consisting of

hierarchically related items is considered to be desirable and the goal

is to measure the.extent to which a test has this property. Put another

may, the goal is to determine the extent to which the items-op a test

form a Guttman scale. One such measure was proposed by Cliff (1977).

(See also Harnisch and Linn, 1981, and the paper by MacArthur in this

volume.)

The simplest model consists of two equivalent items, and it arises

as follows. Let be the proportion of examinees who know both items.

In contrast to earlier sections, a conventional scoring procedure is used:

That is, examinees get only one attempt at an item, and the item is scored

either correct or incorrect. Let pij be the probability of the response

pattern ij (i=0,1; j=0,1) where a 0 means incorrect, and a 1 means correct.

This, 1310 represents the probability of a correct-incorrect response for a

randomly sampled examinee. If al isfthe probability of correctly guessing

the response to the first item when the randomly sampled examinee does not

know, and if (32 is the corresponding probability on the secoa item, and

if local indOendence holds (i.e., given an examinee's latent state, the

responses are independent) then

P11 (1-61302

P10 (1-61(1-132)

P01 (1-)°2 (1-131)

POO (1-6(1-1)(1-132).

3



Solving for $, and yields

P10

1

Plo ' Poo

Pol
f3,

2
.

P01 POO

and

6.10

1 (Pm Poo)(Plo Poo)/Poo

If xlj .. is the number of examinees who have an ij response pattern,

the unbiased maximum
likelihood estimate of pij is pij = xij/N where, as

before, N is the number of randomly sampled examinees. Thus, c can be

estimated.

An interesting feature of the equivalent item model is that it is,

possible to include additional errors at the items level such as Pr(incor-

,rect)examinee knows) (Macready and Dayton, 1977). However, estimating

the parameters usually requires iterative procedures that are typically

implemented on a computer. Goodman (1979) describes one such procedure,

and Macready and Dayton (1977) used the scoring method (cf. Kale, 1962).

Testing Whether Two Items are Equivalent

One way to check the assumption of equivalent items is to apply the

usual goodness-of-fit test as illustrated by Macready and Dayton (1977).

For some cases, such as the equivalent item model describ above, this

cannot be done because there are zero degrees of flto

An alternative and relatively simple test of whether two items are

equivalent is possible using an answer-until-correct scoring procedure.



For a randomly sampled examinee let pij be the probability of a correct

response on the ith of the first item and the jth attempt of the second.

If two Items are indeed equivalent, and if for example, t=3, it can be

seen that

P12 P21 P22

P13 P23

and
P31 P23

For recent results on testing these equalit es, see Smith et al. (1979),

and Wilcox (1982e).

Hartke (1978) describes another approach based on latent partition

analysis, and an indexj?roposed by Baker and Hubert (1977) might also be

useful.

Hierarchically Related Items

Dayton and Macready (1976, 1980) describe very general latent structure
0

models for handling hierarchically related items. Again these models can

be used to measure guessing, and they have the advantage of including

other errors at the item level such as = Pr(incorrectiexaminee knows).

The model for AUC tests essentially sets = 0, but the practical impli-

i

cations of 'pis have not been established.

As was the.case for equivalent items, estimating the parameters in

the model requires iterative techniques. In some instances simple (closed

form) estimates, exist Ce.g., Wilcox, 1980b), but these models make certain

assumptions that may be unreasonable in many situations.
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3. STRENGTHS AND WEAKNESSES OF LATENT CLASS MODELS

Latent class models have three primary strengths. First, it now

appears that one of two models can be used to explain the observed re-

sponses to a multiple-choice test item (Wilcox, 1982b). These models

are an oversimplification of reality (as are all models), but they seem

to give a good approximation of how examinees behave when taking a

test. Of course future investigations might reveal that more complex

models are really needed, but so far this does not appear to be the

case.

The second strength is that many measurement problems can now be

solved that were previously impossible to address. In particular, these

models correct for guessing, or measure the effects of guessing which

in turn improves the accuracy of tests and measurement techniques.

Note that the nature of.guessing in latent class models is different

from'the guessing parameter in latent trait ffndels (Wilcox, 1982c).

Third, even if some other model is ultimately preferred, a latent

class model may be useful, for example, when estimating the item para-

meters in a latent trait model.

A weakness 1te41tt?ass models is that certain technical prob-

lems still need to be solved. These incTude better ways of scoring an

n-item test, testing the model used in Wilcox (1982e), and finding a

strong true-score model that is reasonable when the model in Wilcox

(1982a) gives a poor fit to data. Also, some examinees may give an

incorrect response when they know, but the seriousness of this problem

is not well understood.

196
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4: PRESENT AREAS OF APPLICATION

This section outlines some of the measurement problems that can now

be solved with latent class models.

The Accuracy of an Item and the Effectiveness of Distractors

In addition to estimating the proportion of examinees who know the

item, the latent structure models for AUC'tests can be used to es-

timate the probability of correctly determining whether a typical examinee

knows the item. More specifically, assume it is decided that an examinee

,
knows the correct response if the correct answer is given on the first

attempt (i.e., a conventional scoring procedure is used). For a randomly

sampled examinee, the probability of correctly determining whether he/she

knows is just T = 1-p2 (Wilcox, 1981a), and this is estimated with T = 1-x2/N.

Note that when.(2.2) is assumed 0 < p2 < 1/2, in which case 1/2 < r< 1.

19
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The parameter T is a function of two important quantities. The first

is the proportion of examinees who know the answer, i.e.
' Ct-1'

and the

second is the effectiveness of the distractors among the examinees who

do not know. To see this more clearly, note that

T Ct-1 Pi
i=2

(4.1)

When is close to one the item accurately reflects the true latent

state of the examinees because presumably examinees who knowwil choose

the correct response on their first attempt. ilks moves cl ser to

zero, the accuracy depends more on the effectiveness of the distractors.

Thus, it may be important to determine how well distractors are perform-

411g among the examinees who do not know.

It can be shown that the distractors are most effective when guess-

ing is at random which corresponds to

P2 P3 :" Pt
(4.2)

(Wilcox, 1981a). This suggests (4.2) be tested,'and/or we estimate how

"far away" the pi values are from the ideal case where (4.2) holds.

Testing (2.3) can be accomplished by noting that the conditional

distribution of x2,...,xt given xl is multinomial with parameters N-x
1

and p14,(1-p1), = 2, ...,t. Thus, the ususal chi-square test can be

applied. That is, compute

X
2

= X i 1
)/(t-1))

2
(4.3)

1=2
(N-x

1
)/(t-1)

If X
2

is greater than or equal to the 100(1-a) percentile of the chi-square

190
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distribution with t-2 degrees of freedom, reject the hypothesis that (4.2)

holds. For recent results on using (4.3), see Chacko (1966), Smith et al.

(1979), Wilcox (1982e).

Empirical results indicate that guessing will not be at random. Thus,

a more interesting question might be to determine whether the distractors

are "close" to the ideal sitLation where (4.2) holds. The first sten in

solving this problem is to choose a measure of how unequal the pi values

are (i = 2,...,t). Many such measures have been proposed which have similar

properties (e.g., Marshall and Olkin, 1979; Bowman et al., 1971). One

of these is the entropy function which was used by Wilcox (1982a), and

another is Simpson's measure of diversity (Simpson, 1949) given by

t
Di/(1-131)]

2

i=2

Writing (4.3) as

-(N -X ) + .121 2
x.

1 N-x
1 1=2

'

it is seen that the usual maximum likelihood estimate of Simpson's measure

2
of diversity, namely, y (x./(N-x

1
))

'

is a simple linear transformation

i=2

of X
2

. Since X
2 is better known than Simpson's measure of diversity, X

2.

will be used here.

It is helpful to note that the smallest possible value for X
2

is

L tri:!1 [(n-x1)(2r4-1) - (t-1) (r+1)] n+xl (4.4)

where r is the largest integer satisfying r(t-1) < n-xl (Dahiya, 1971).

19:j
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The maximum value is

M = (n-x1)(t-2) . (4.5)

(Smith et al., 1979). The closer X2 is to M, the more 0active are the

distractors. Since L and M are known, the relative extent to which X
2

is clos,e to M can be determined. In particular,

E=CX2-0/(M-L)

measures the effeCtiveness of the distractors being used, where O<E<1.

If E=0, the distractors are as effective as possible in determining

whether an examinee knows the correct response. As E approaches 1, the

-

distractors become less effective.

Comparing Two Items

If the AUC model is assumed, and if independent'estimates of the pi

values for two items are available, it is possible to te he hypothe is

that one of the items is at least as effective as the second by poly ng

results in Robertson and Wright (1981). The null hypothesis of i te est

here is that y pi/(1-p1) > .y pi/(1-p1), k=2,...,t-2 where pi

i=2 1=2
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is the pi value for the second item. Let T
1

and T
2
be the value of T for

two items. Another way of comparing two items is to test whether the

first item is better than the second by testing whether T1>12. In effect

this approach compares the overall effectiveness of the two items in terms

of the population of examinees, while the approach previously described

is to compare the effectiveness of the distractors among the exam-

inees whd do not know.

Characterizing Tests

Let T1 be the value of T for the i-
th

item on an n-item test. A natural

way of describing the accuracy of a test is to use T
s

X T. This is
i=1

the expected number of correct decisions about whether a typical (randomly

sampled) examinee knows the answer t& the items on a test. If, for example,

T
s
= 7 and n = 10, then on the average, 7 correct decisions would be made

.about whether an examinee knows the answer to an item, but for 3 of the

items it would be decided that the examinee knows when in fact he/she

does n6t.

Estimating Ts is easily accomplished using previous results. In

.th
particular,forarancimsampleofNekaminees,IA xi .=0 if the

examinee \gets the item correct on the second attempt; otherwise

x
ij

= 1. Then

T = N

n N
-1

i=1 j=1
13

is an unbiased estimate of T.
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The k Out of n Reliability of a Te.t

Once test data is available, the question arises as to how certain

we can be that T
s

is large or small. That is, we want to estimate the

Pr(T T
0
)(cf. Tong, 1978). This problem is similar to one found in

s

the engineering literature where the goal is to estimate the out of n

reliability of a system. Bounds on this probability can be estimated

without assuming anything about cov(xij, xi,j,) (Wilcox, 1982e).

The procedure is outlined below.

.Let z.=1 if a correct decision is made about whether a randomly

sampled examinee knows the i h item on a test; otherwise z.=0. For a

randomly sample examinee Pr (z.=1) = T. Note that from previous results

Pr(zi=1) = Pr(x1.
3
.=1). The out of n reliability of a test is defined

to be

PK Pr(/zi > K)

This is the probability.that for a typical examinee, at least k correct

decisions are made among the n items on a test. By a correct decision

is meant the event of correctly determining whether the examinee knows

an item. Knowing pk yields additional and important information about

the accuracy of a test. An estimate Of pk is not available unless

cov(zi,zj)=0, or k, the number of items, is smell. (See Wilcox, 1982g,

, 1982j.)

For any two items, let pkm be the probability that a randomly

lected examinee chooses the correct response on-the k-
th. attempt of the

th
first item, and the attempt of the second. (It is assumed that both
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items are administered according to an AUC scoring procedure.) Let

K
ij

(f L=0,...,t-1) be the proportion of examinees who can

eliminate i distractors on the first item and j distractors on the

second. Then, under certain mild independence assumptions

t-k t-m

Pkm ' AI Kij/[(t-i)(t-j)] .

The equation makes it possible to express the K. 's in terms of the
ij

pkm's which in turn makel it possible to estimate Kij for any i and j.

Next let E be the probability that for both items, a correct d -

1-------
cision is made about an examinee's latent state. It can be seen that

Kt-1,t-1 1-1311

and so t can also be estimated.

FortheiIllandP-litemonatest,letEbe the value of E,1J

and define

n-1 n

5 =
j=i+1

UK = Ts K

whereTswaspreviouslydefinedt.obeET.and

V
K

= (2S - K(K-1)/2).

Then from Sathe et al. (19P0)

> (2Vk...1 (K-2));U 1/[n(n-K+1)]

If 2V < (n+K-2)U
K-1

PK

2((K*-1)U
K-1

- V
K-1

(K*-K)(K*-K+1)
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where K* + K 3 is the largest integer in 2VK_1/UK_1. Two upper bounds

are also available. The first is

pK. f 1 + ((n+K-1)UK 2Vd/Kn

and the second is that if 2Vk < (K:1)UK;

(K*-1)U
K

V
K

(K-K*)(K-K*+1)

where K* + K - 1 is the largest integer in K/UK.

What these results mean is that we can estimate quantities that in-

dicate whether p
k.

is large or small. For example,--suppose the right

side of the third to last inequality is estimated to be .9, and that

2V
k-1 < (n+K-2)U

k-1.
This does not yield an exact estimate of p

k

but it does say that pk is estimated to be least .9. Thus, this would

'indicate that the overall test is fairly accurate. If, for example,

the above inequalities indicate that pk < .95 and pk > :1, this does

not give very useful information about whether pk is reasonably large.

If pk < .1 we have a poor test.
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Estimating the Proportion of Items an

Examinee Knows

It is a simple matter to extend previous results to situations when

a single examinee responds to items randomly sampled from some iteM domain.

For example, let be the probability of a correct response on the i-
ttl

attempt of a randomly sampled item. Let 11(i=0, , t=1) be the propor-

tion of items for which the examinee can eliminate i distractors. It is.

assumed that each item has at least one effective distractor, so it-1 is

the proportion of:items the examinee knows. It follows that

t-i

j=0

which is the same as equation (2.0) where pi and are replaced with

qi and yi. In fact, all previous results extend immediately to the present

case.

Criterion-Referenced Tests

A common goal of a criterion-referenced test is to sort examinees

into two categories. (See Hambleton et al., 1978a; Berk, 1980; and the

1980 special issue of Applied Psychological Measurement.) Frequently

these categories are defined in terms of some true, score, and here the

true score of interest is the proportion of items in an item do-

main that an examinee knows. The goal is to determine whether y is

larger or smaller than some predetermined constant, say yl.

_
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It is known that_guessing can seriously affect the accuracy of a

criterion-referenced test (van den Brink and Koele, 1980). Moreover,

assuming random guessing can be highly unsatisfactory (Wilcox, 1980c).

Another advantage of the AUC scoring model is that it substantially re-

duces this problem (Wilco press, b). For some results on comparing

to y' when equivalent items are available, see Wilcox (1980a).

Sequential and Computerized Testing

In certain 'situations, such as in computerized testing, sequential

procedures will be convenient to use. Some progress has been made in

this area, but much remains to be done.

Suppose an examinee responds to items randomly sampled from an iteM

domain and presented on a computer terminal. Further suppose the examinee

responds according to an AUC scoring procedure. A typical sequential pro-

cedure for this situation is to continue sampling until there are n items

for which the examinee gives a correct response on the first attempt. Let

yi (1=1, , t) be the number of items for which the examinee requires

i attempts,to get the correct response. For the sequential procedure just

described, sampling continues until yl = n, in which case the joint prob-

%

ability function of y2, , yt i$ negative multinomial given by

n yi

= nr(y0) .R. pi /yi!

1=J

where yo = y y., and for i > 2, yi = 0,1,...

i=1 1

The problem with the sequential procedure just described is that with
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positive probability, the number of sampled items will be too large for

practical purposes. This might be an extremely rare event, but it is

desirable to avoid this possibility all together. A solution to this

problem is to use a closed sequential procedure where sampling continues

A

until y1=n1, or y2=n2, etc. where n1,...,nt are positive integers chosen

. by the investigator. In this case the joint probability function of

Y1,.--Yt is

t

Ti

Yi
p./Y-!r(y0)(Z.Y1 I[yi=ni]) i 1

where I is-the usual indicator function given by

1 2 if y.=n.
I [y.=n.] =

1 1

1 1 0, if otherwise

For the special case n1=n2=...=n, the probability function becomes

t yi

nr(Y0) pi /Yili=1
which has the same form as the negative multinomial except that for some

j, yj=n, and 0 < yi < n-1, Vj.

The maximum likelihood estimate of qi is qi = yi/y0, so the maximum

likelihood estimate of y, the proportion of items an examinee knows, is

yt_i = ql q2 (Zehna, 1966). If the model is assumed to hold,
it-1 may

not be a maximum likelihood estimate.
Instead'one would estimate yt_i to

be zero when y < 0; if the estimates of qi (i=1,...,t) do not satisfy

the inequality ql > q2 > .

(Barlow et al., 1972).

. > qt apply the pool-adjacent-violators algorithm

2



Wilcox (in press) shows that if the goal is to compare yt_i to the

known constant yi, as in criterion-referenced testing, and if

is decided if and only if y > y ' the sequential and closed sequential
t-1

procedures have the same level of accuracy. Moreover, it appears that

the closed sequential procedures nearly always improves upon the more

conventional fixed sample approach. More recently Wilcox (1982f) pro-

posed two tests of q1=...=qt,andmethods of determining the moments of

the distribution were also described.

A Strong True Score Model

Strong true score models attempt to relate a population of examinees

to a domain of items. In many situations an item domain does not exist

de facto, in which case strong true score models attempt to find a family

of probability functions for describing the observed test scores of any

examinee, and simultaneously to find a distribution that can be used to

describe the examinees' true score.

Perhaps the best known model is the beta-binomial. If y is the number

of correct responses from an pcaminee taking an n-item test, it is azsumed

that for a specific examinee, the probability function of y is:

\'(ryl) qy (1_0n-y

For the population of examinees, it is assumed that the distribution of

q is given by

g(q)
r-1

r r)rs)
q (1-co1s-
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where r > 0 and s > 0 are unknown parameters that are estimated with ob-

served test scores. Apparently Keats (1951) was the first to consider

this model in mental test theory.

The beta-binomial model has certain theoretical disadvantages, but

experience suggests that it frequently gives good results with real data.

A review of these'results is given by Wilcox (1981d).. However, the model

does not always give a good fit to.data, and some caution should be exer-

cised (Keats, 1964). In the event,of a poor fit, a gamma-Poisson model

might be considered (Wilcox, 1981d).

When the beta-binomial is assumed, many measurement problems can be

solved. These include equating tests by the equipercentile method, es-

timating the frequency of observeescores when a test is lengthened, and

estimating the effects of selecting individuals on a fallible measure

(Lord, 1965). Other applications include estimating the reliability of

a criterion-referenced test (Huynh, 1976a), estimating the accuracy of

a criterion-referenced test (Wilcox, 1977c), and determining passing

scores (Huynh, 1976b).

A problem with the beta-binomial model is that it ignores guessing.

Attempts to remedy this problem are summarized by Wilcox (1981d), but

all of these solutions now appear to be unsatisfactory in most situations.

This is unfortunate because it means that a slightly more complex model

must be used. More recently, however, Wilcox (11.982a, 1982b) proposed

a generalization of the beta-binomial model :that takes guessing into

account, and which gives a reasonably good fit to data.
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Some Miscellareous Applications of Latent Structure Models

Several applications of latent structure'models have already been

described, and there are,several other situations where they may be use-

ful. For example, Ashler derives an expression for the biserial corre-

lation coefficient that includes ct...1, the proportion of examinees who

\know an item. Wilcox (1982g) discusses how to empirically determine the

number of distractors needed on a multiple choicie test item, and Knapp

(1977) discusses a reliability coefficient based on the latent state

point of view. (See also Frary, 1969.) Macready and Dayton (1977)

illus'trate how the models can be used to determine the number of equiv-

alent items needed for measuring an instructional objective, and Emrick

(1971) shows how the models might be used to determine passing scores.

Note that Emrick's estimation procedure is incorrect (Wilcox and Harris,

1977), but this is easily remediA using the estimation procedures al-

ready mentioned; closed form estimates are given by va'n der Linden

(1981).

5. POSSIBLE EXTENSIONS AND CONTROVERSIAL ISSUES

The AUC models assumed that examinees eliminate as many distractors

as they can and then guess at random from among the alternatives that

remain. A recent empirical investigation suggests that the random guess-

ing portion of this assumption will usually give a reasonable approxi-

mation of reality (Wilcox, 1982k). No doubt there will be cases where

this assumption is untenable in which case there are no guidelines.on

how to proceed.
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A theoretical advantage of the latent structure model based on

equivalent or hierarchically related items is that they included not

only guesSirg, but errors such as Pr(incorrect responselexaminee knows).

The practical implications of this are not well understood.

Wilcox (1981a) mentions that under an item sampling model for AUC

tests, an examinee with partial information can improve his/sher 'test

score by choosing a response, and if it is incorrect, deliberately

choose another incorrect response. Thus, if (y1-y2)/n is used to esti-
,

mate ;, the estimate would be higiler for such an examinee becthse

y2 is lower. Four points should be made. First, this problem can be

partially corrected by estimating the qi's with the pool-adjacent-

violators algorithm (Barlow et al., 1972, pp. 13-15). Second, if an

examinee is acting as described, it is still possible to correct for

guessing by applying the true score model proposed by Wilcox (1982a).

If it gives a good fit to data, estimate to be q1-(1-q1)(q1).

The third point is that there is no indication of how serious this prob-

lem might be. Finally, a new scoring procedure is being examined that

might eliminate the problem.

It has been argued (e.g., Messick, 1975) that tests should be homo-

geneous in some sense. Frequently thistmeans that at a minimum, a test

should have a single factor. A sufficient condition for the best known

latent trait models (see e.g., Lord, 1980; Wainer et al., 1980; Hambleton

et al., 1978b; Choppin, this volume) is that th-ls assumption be met

(cf. McDonald, 1981). In general, the latent structure models described

214.,



in this paper do not require this assumption: One exception is the equiv-

alent item model. (See Harris and Pearlman, 1978.) The point is that

in this paper, no stand on this issue is needed, i.e., it is irrelevant

whether a test is homogeneous when applying, say, the answer-until-

correct scoring procedure, or the corresponding strong true-score model.

Wainer and Wright (1980) and Mislevy and Bock (1982) have studied

the effects of guessing on latent trait models, but these investigations

do not take into account the results and type of guessing described

here. If guessing proves to be a problem, perhaps latent class models

can be of use when latent trait models are applied.
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GENERALIZABILITY THEORY

Noreen Webb
University of California, Los Angeles

Definition and Focus

Generalizability theory evolved out of the recognition that the

concept of undifferentiated eror in classical test theory provided too

gross a characterization of the multiple sources of error in a

measurement. The multidimensional nature of measurement error can be

seen in how a test score is obtained. For example, one of many

possible test forms might be admiistered on one of many possible

occasions by one of many possible testers. Each of these

choices--test form, occasion and tester--is a potential source of

error. G-theory attempts to assess each source of error in order tc

characterize the measurement and improve its design.

A behavioral measurement, then, is a sample from a universe of

admissible obsrvations characterized by one or more facets (e.g.,

test fordis, occasions, testers)1. This universe is usually defined by

the Cartesian product of the level5 (called conditions in G-theory) of

the:facets. From this perspective, Cronbach et al. (1972, p. 15) say:

The:score,on which the decision is to be based is only one

ofmankscores that might serve the same purpose. The

decision.maker is almost never interested in the response

given to the particular stimulus objects or questions, to

the particular tester at the particular moment of testing.

Some, at,leaSt, of these conditions of measurement could be

altered withoutmaking the score any'less acceptable to the

4eciston maker. That is to say, there is a universe of

observations', any of which would haveyielded a usable basis

Introduction to G-theory are provided by Brennan (1977a, 1979a)

Brennan. ind Kane (1980), Cronbach et al. (1972), Erlich and

Shavelson (19760 Gillmore (1979) Cardinet and Tourneur (1978),

Huysamen (1980), Shavelson and Webb (1981), Tourneur (1978),

Tourneur and Cardinet (1977), Van der Kamp (1976), and Wiggins

(1973).
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for the decision. The ideal datum on which to base the

decision would be something like the person's mean score

over all acceptable observations, which we shall call his

"universe score." The investigator uses the observed score

or some function of it as if it were the universe score.

That is, he generalizes from sample to universe. The

question of "reliability" thus resolves into a question of

accuracy of of generalization or generalizability.

Since different measurements may represent different universes,

G-theory speaks of universe scores rather than true scores,

acknowledging that there are different universes to which decision

makers may generalize. tikewise the theory speaks of

generalizability coefficients rather than the reliability coefficient

realizing that the value of the coefficient may change as definitons

of universes change.

G-theory distinguishes a decision (D) study from a

generalizability (G) study. This distinction recognizes that certain

studies are associated with the development of a measurement procedure

(G studies) while other studies then apply the procedure (D studies).

Although the decision-maker must begin to plan the D study before

conducting the G study, the results of the G study will guide the

specification of the D study. In planning the D study, the decision

maker (a) defines the universe of generalization and (b) specifies his

proposed interpretation of a measurement. These plans determine (c)

the questions to be asked of the G study data in order c) optimize the

measurement design. Each of these points is considered in turn.

(a) G-theory recognizes that the universe of admissible

observations encomliassed by a G study may be broader than the universe

to which a decision maker wishes to generalize. That is, the decision

maker proposes to generalize to a universe comprised of some subset of
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the facets in the G study. The universe is called the Universe of

generalization. It may be defined by reducing the universe of

admissible observations, i.e. by reducing the levels of a facet

(creating a fixed facet; cf. fixed factor in ANOVA) by selecting and

thereby controlling.one level of a facet, or by ignoring a facet. All

three alternatives have consequences for the estimation of the

components of error variance that enter into the observed score

variance.

(b) G-theory recognizes that decision makers use the same test

score in different ways. For example, some interpretations may focus

on individual differenes (i.e., relative or comparative decisions),

some may use the observed score as an estimate of a person's universe

score (absolute decisions; cf. criterion-referenced interpretations),

while still others may use the observed score in a regression estimate

of the universe score (cf.Kelley's, 1947, regression estimate of true

scores). There is a different error as8qciated with each of these

proposed interpretations.

To illustrate the distinction between relative and absolute

decisions, suppose that a decision is to be made using scores on an

objective test of arithmetic. As an example of a relative decision, a

decision-maker might want to channel the top 20 percent of the scorers

into an above-average academic track (regardless of their actual

scores). In this case, if all items on the test rank students in the

same way, even if some items are more difficult than others, it would

not matter to a student which items he or she received. The same
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students would be se ected for the accelerated track whether the test

consists of easy items or difficult items. In more formal terms the

variation in item means would not be a part of error. As an example

of an absolute decision, a decision-maker might want to select for

accelerated placement all students who answer correctly 75 percent or

more of the items on the test. In this case, the variation in item

means would contribute to error. Even if all items rank students in

the same way, a test composed of easy items would place more students

into the accelerated program than a test composed of difficult items.

(c) Ordinarily, the universe of admissib7e observations ih a G

study is defined as broadly as possible within practical and

theoretical constrafrits. In most cases Cronbach et al. recommend

using a crossed G study design so that all sources of error and

interactions among sources of error can be estimated. (It should be

noted, however, that a nested G study is sometimes useful because it

provides more degrees of freedom for some estimates of sources of

error.) The design of D studies, on the other hand, can vary widely

and include crossed partially nested, and completely nested designs.

Often, in D studies, nested designs are used for convenience, to

reduce costs, for increasing sample size, orfor a combination of these

reasons. All'facets in the D study design may be random or only some

may be random.
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Development of the Model

Scores and variance components. In G-theory a person's score is

decomposed into a component for the universe score (pp ) and one or

more error components. To illustrate this decomposition, we consider

the simplest case for podagogical purposes--a one facet, p x i (person

by, say, item) design. (The object of measurement, here persons, is

not a source of error and, therefore, is not a facet.) The

presentation readily generalizes to more complex designs. In the p x

i design with generalization over all admissible items taken from an

indefinitely large univese the score for a particular person (p) on a

particular form (i) is:

( 1)

=
li

p LI

Li

+ X p
p

- p. + p
pi

(grand mean)

(person effect)

(item effect)

(residual)

Since this design is crossed all persons receive the same items.

Except for the grand mean, each score component has a distribution.

Considering all persons in the population, there is a distribution of

p - p with mean zero and variance (p - p)
2=a 2 which is called

P P P

the universe-score variance and is analogous to the true-score

variance of classical theory. Similarly, the component for item has

2
mean zero and variance (p. - p )

2
= a. which indicates the variance

of constant errors associated with items while the residual component

2
has mean zero and variance a pi,e

which indicates the person x item



interaction confounded with residual error, since there is one

observation per cell. The collection of observed scores. Xpi has a

variande of
2

(Xpi .41)2 which equals the sum of the variance
X
pi

components:

(2)
2 2 2 2

a. aa
X
pi

a
p + + pi ,e

G-theory focuses on these variance components They are

estimated by means of a generalizability (G) study. The relative

magnitudes of the components provide information about particular

sources of error ipfluencing a measurement. It is convenient to

estimate variance components from an ANOVA of sample data. Numerical

estimates of the variance components are obtained by setting the

expected mean squares equal to the observed mean squares and solving

the set of simultaneous equations as shown in Table I.

Table I

EStimates of Variance Components for a
One Facet p x i Design

Estimated

Source of Mean Expected Varianced

Variation Square Mean Square* Component

Person (p) MS
P

a
2

+ n.a2
pi,e 1 p

^2
ap (MSp-MSre)/ni

2 ^2
)/n

pItem (i) MS1 a
2

+ n a. a = (MS -
pi,e p 1 i i

MS
res

2
pi,e MSres

a .

pi,e
O.20,e . MS

res

*ni . number of items; n = number of persons.
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Estimation of errbT. Not'only do the magnitudes of the variance

components show the importance of each source of error in the

measurement, they can be used'to estimate the total error for relative

and absolute decisions'. For relative decisions, the error inapxi

design is defined as:

(3) dpI = (x
pI

p
I

) (p
p p ) ,

where I indicates that an average has been taken over the levels of

facet i under which p was observed. The variance of the errors for

relative decisions is:

(4)
2 2

a
pI

= a
pi,e

/n
i '

where nil indicates the number of conditions of facet i to be sampled

2
in a D study. Notice that (a) a/nil is the standard eror Of the

mean of a person's scores averaged over the levels of i (items in our

example). And (b) the magnitude of the error is under the control of

2

the decision maker in,the D study. In order to'reduce a 6, nil may be

increased. This is analogous to the Spearman-Brown prophecy formula

in classical theory and the standard error of the mean in sampling

theory.

For absolute decisions, the error is defined as:

(5) A
pI

= X
pI

- p
p
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The variance of these errors inapxidesign is:

(6)
2

a = a = .-1- a
2

. /n.. 2 2 2,

A I pI 1 pl ,e

2 2
In contrast to as, aAincludes the variance of constant errors

2
associated with facet i (o. ). This arises because, in absolute

decisions, the difficulty of the particular items that a person

receives will influence his obs.erved score and, hence, the decision

maker's estimate of his universe score. For relative decisions,

however, the effect of item is constant for all persons and so does

nct influence the rank ordering of them (see Erlich & Shavelson,

1976b).

Finally, for decisions based on the regression estimate of a

person's universe score, error (of estimate) is defined as:

(7) PP PP

where u is the regression estimate of a person's universe score,

The estimation procedure for the variance of errors of estimate may be

found in Cronbach et al. (1972, p. 97ff).

The variance components fromacrossed pxiGstudy design can

also be used to estimate error in a nested D study design with items

nested within persons (we write i:p to denote nesting). So, the

effect of the constant errors associated with facet i is confounded

with the effect associated with the person by i-facet interaction

(pi,e). .Hence,
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2 2 2 2 2

aX
pI

ap ap aA

2

Note that, for a completely nested design,Ps

Generalizability coefficients. While stressing the importance of

2
variance components and errors such as as ,,generalizability theory

also provides a coefficient analogous to the reliability coefficient

in classical theory. A generalizability (G) coefficient can be

estimated for each of a variety of D study designs using the estimates

of variance components and error produced by the G study. A

decision-maker can then use the estimated G coefficients to choose

along thelD study designs. For the one-facet case described here,'

generalizability coefficients can be estimated for crossed or nested D

study designs with any number of items. For designs with more than

one facet, there are many D study designs possible 'each with an

estimated G coefficient.
2

TheAeneralizatility (G) coeffitient, gp , for relative

decisi ns is defined as the ratio of the universe-score variance to

the expected observed-score variance, i.e., an intraclass correlation:

(9')
EP

2
=

2
a
2

2
(X) a2 +

P 6

The expected observed-score variance is used in G-theory because the

theory assumes only'random sampling of the levels of facets and so the
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observed-score var./Lance may change from one application of the design

'to another. Sample estimates of the parameters in (9) are used to

estimate the G coefficient:

^2
a

p" 2 =
^2 ^2
a
P
+ a

CP-2 is a biased but consistent estimator of Cp2.

For absolute decisions a generalizability coefficient can be

defined in an analogous manner:

2

(10)
a
p andEaz ...

a2 + a
2

P ,Is

a
2

Ep2
az 4. a2

6

Finafly, note that, for completely nested designs regardless of

whether relative or absolute decisions are to be made, error variance

is defined as G2 and so (10) provides the generalizability coeffici,nt

for such'designs.
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A two-faceted example. A study of the dependability of measures

of mathematics achievement illustrates the theory's treatment of

multifaceted measurement error.' In designing a generalizability (G)

study, the decision-maker specifies possible sources of error in the

measurement of mathematics achievement. Variablility across test

items is clearly a poyible source of error. Furthermore students

may obtain different scores on multiple occasions even though no

learning has taken place between Occasions, so occasions is a possible

source of error.' (It is assumed that true ability is constant from

one occasion to the next. Therefore, a time interval between

occasions must be selected that is short enought to prevent true

changes from taking place--learning or maturation--but is long enough

to prevent students' memory of the test from influencing their

scores.) 'Another source of error might be item format, such as

Smiltiple choice, true-false, or open-answer (student fills in the

correct answer): Students' scores might differ across item formats.

'For the present illustration, the item and occasion sources of error

will be considered.

In the generalizability study, thirty tenth-grade students (p)

were administered a twenty-item (i) test on two occasions (j). In

differentiating students with respect to mathematics achievement,

errors in the measurement may arise from inconsistencies associated

with items, occasions, and other unidentified sources. G-theory

incorporates these potential sources of error into a measurement model

and estimates the components of variance associated with each source

of variation in the 30 x 20 x 2 (p x i x j) design.
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Table 2 enumerates the sources of variation and presents the

estimated variance components for the mathematics test.

Table 2

Generalizability of Measures of Mathematics Achievement

Source of
Variation .

Estimated Variance Components

ni'=10,ni'=1 n1 1=10,ni1=2,

Students (P) 7.55 7.55 7.55

Items (I) 1.73 .17 .17

Occasions (0 .96 .96 .48

PI 5.42 .54 .54

PJ .71 .71 , .36

IJ .50 .05 .02

Residual (PIJ,e) 4.88 ,.49 .25

6 11.01 1.74 1.15

G coefficient for relative decisions ,39 .81 .87

14.20 2.92 1.82

G coefficient for absolute decisions .35 .72 .81

The first column shows that three estimated variance components are

large relative'to the other components. The first, for students (a2 )

is analogous to true score variance in classical test theory and is

expected to be large. The second, the student by item interaction (a2.)
pi
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represents one source of measurement error and is due to the tendency

of different items to rank students differently. The third is the

residual term representing the three-way interaction between students,

items, and occasionsand unidentified sources of measurement error

The small components associated wth occasions (the J, Pd,

IJ components) suggest that the occasion of testing introduces little

variablility into the measurement of mathematics achievement. Average

student performance over items is similar across occasions (('; );

students are ranked nearly the same across occasions ((^32. ; and item
PJ

means are ordered nearly the same across occasions (c^qj ). jbe

optimal D study design then, will include multiple test items but few

ocasions.

Table 2 also gives estimated variance components, error, and

generalizability coefficients for three 0 study designs: one item and

one occasion, ten items and one occasion, and ten items and two

occasion. Information is presented for both relative and absolute

decisions. As described earlier, a relative decision might be to

select the top 20 percent of the scorers for a special program. The

variance components contibuting to error in this case include the

components for all interactions with persons: PI, PJ, and PIJ,e.

These are the only components that influence the rank ordering of

students. An absolute decision might be to select all students who

obtain a score of 75 percent correct or better. The error in this

case consistS of all components except that for students: I, J, PI,

JP, IJ, and PIJ,e. All of these components influence students'

A

absolute level of performance. As the estimates of error and
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generalizability coefficients in Table 2 indicate, administering a

ten'-item test on one occasion would substantially reduce error over a

single item. Increasing the number of occasions to two would reduce

error by only a small amount. The small reduction in error may not

warrant the extra time and expense iRvolved fh administering the test

Typically, several D. study designs will yield the Arne level of

generalizability. For a decision-maker mho desires'a generalizability
't

coefficient (relative decision) of .87, for example, there.are at

least two D study designs to choose from. As indicated in Table 2,-

ten items administered on two octasions would be expected to produce

this level of generalizability. Alternatively, 25 items administered

on one otcasion would also produce this restfit. The decision-maker

must balance cost considerations to choose ';he appropriate D study

design. When items are difficult and expRnsive to produce, the former

ernore When itcms are fairly easy to generate-

(as is probably the case in tests if mathematics achievement), the

latter design may be preferable.

Assumptions

Lack of restrictions. Before discussing the assumptions

underlying the generalizability model and procedures, it is

instructive to describe which assumptions and restrittions occurring'

in other measurement theories (for example, classical theory) are not

held,in generalizability theory. First, generalizability theory

avoids the classical assumption of, parallelism: equal means,

variances and intercorrelations aMong condit4ons of a facet (for

example,.item scores). The lack of these assumptions has implications

233



- 7.15 -

for the interpretatiOn of the result.s.of G and D ttudies. One .cannot

assume that conditions sampled within a'faCet are'equivalent. For
.

example, one cannot assume that items 's4mpled,for8 a stuciy have the

same means, variances and intercorrelatio.. ns. Furthermore, conditions

, ,., \

sampled across
f:
studies cannot. be assumedlo be eq,,uivalent. FOr

'example, theitems,selected for the G study may not have the same

level of difficulty as those selected Tor the D Moreover, the

items in one D study may not be equivalent to those selected for

another D study. The differences among conditions and between sets of

conditions may te due to characteristics of examinees as well as

characteristics of items.,

To deal with the difficulty that one tet of conditions sampled in

a D study (for example, items or occasions) may not be equivalent to

each other or to another set, Cronbach,et al.,(1972) discuss an

item-sampling design pFoposed by Lord'and Novick (1968). In this

plan, a large sample of persons it subdivided at random into three or
.

more subsamples'. In the G study, each subsample would be observed

Under the,tet.of coditions,to be sampled in the D study and one

additional condition. The additional condition would be different for

each subsample. Each subsample, then, would be observed under

identical conditions plus one different condition. A comparison of

the results (variance component estimates) across subsamples would

reveal how well the set of conditions to be sampled in the D study

represent the universe of conditions.. If the results across

subsamples are similar, then one can confidently generalize the

results of the 0 study to the conditions in the universe of
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generalization. If the results are different across subsamples, one

must be very cautious in generalizing beyond the condi'-ions (for

example, items) sampled in the D study"

Second, the generalizability model makes no assumptions about the

distributions underlying the measurements obtained in the G and D

studies, or of the universe scores. Little is known, however, about

the effects of different underlying dist'ribution's of scores on the

estimates of variance components and the efficiencies of the

estimators. It should be noted that generalizability theory does make

assumptions about the distributions underlying variance component

estimation (see next section).

Third, there is no restriction about the kinds of conditions that

can be defined as facets. Any source of variation can be defined as a

facet including, for exaMple, test item, test form, item format,

occasion of testing, and test administrator. Generalizability theory

may be the only way\to disentangle the effects,of these sources of

variation. IteM-response models are not able to deal with the effects

of administrator variation, for example.

Random sampling. One of the few assumptions of generalizability

theory is random sampling of persons, and conditions (for random

facets). Although this assumption:ii considerably weaker than the

assumption of classical theory that_conditions are strictly parallel

(equal meanszariances, correlations), it has often raised objections

from those who maintain that measurements rarely consist of random

samples from well-defined universes of generalization (for example,

Loevinger, 1965; Rozeboom, 1966; Gillmore, 1979). As Kane (1982,

p. 30) points out, "The effeets.vdf upintended departures from the
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random sampling assumption cannot be evaluated accurately, and

therefore the interpretation Of G-study results must always be

somewhat tentative."

Brennan (1981) seti a more Optimistic tone by suggesting that.the

universe or generalization need not be Undifferentiated (as, for

example, a universie of test iteMs), but may be structured such,that

the assumption of random sampling is more acceptable (for example,

sampling from categories representing different item or content

specifications).

Lord and Novick (1968, p: 235) also provide support for the

random sampling assumption, which is relevant for generalizability

theory:

A possible objection to the item-sampling model (for

example, see Loevinger, 1965) is that one does not
ordinarily build tests by drawing items at random from a

pool. There is, however, a similar and equally strong
objection to classical test theory: Classical theory
requires test forms that are strictly parallel, and yet no
one has ever produced two strictly parallel forms for any

ordinary paper-and-pencil test. Classical test theory is to

be considered a useful idealization of situations
encountered with actual mental tests. The assumption of

random sampling of items may be considered in the same way.
Further, even if the items of a particular test have not

actually been drawn at random, we can still make certain

interesting projections: We can conceive an itenkrpulation
from which the items of the test might have been r ndomly
Idrawn and then consider the score the examinee would be

expected to achieve over this population. The abundant

information available on such expected scores enhances their

natural interest to the examinee.
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Infinite universe. Related to nandom sampling assumption

described above is the assumption for random facets that the number of

conditions in the universe of admissible conditions be indefinitely

large. When the universe (of admissible obServations or of

generalization) is finite, the anaTYsis and interpretation need to be

adjusted, depending upon the relationships among the number of

conditions sampled in the G study, the number of conditions in the

universe of admissible observations, and the number of conditions in

the universe of generalizaton. The universe of admissible observatins

comprises all possible combinations of conditions represented in the G

study. The universe of gene?alization consists of those combinations

of conditions over whi\O the decision-maker wishes to generalize.

Although the two unive\r es may be the same, the universe of

generalization often will\be smaller (fewer facets) than the universe

of admissible observations. For example, a G study with items, test

administrators, and occasions as facets may show little variability

due to test administrators and occasions but substantial variability

due to items. For the D study, then, the decision-maker may decide to

use one test administrator and administer the teSt on only one

occasion but use multiple items. The universe of admissible

observations would have three facets; the universe of generalization

would have one facet. Cronbach et al. (1972) consider several

possibilities of finite universes and describe the implications for

analysis. As Cronbach et al. point out, the intermediate cases in

which a subset of a finite universe of conditions is sampled can be

complex.
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-In most applications, the decision-maker's choice is between

random sampling from an indefinitely large universe (random facet) or

inclusion of all of a finite set of conditions (fixed facet). In the

latter case, Shavelson and Webb (1981) recommend that the

decision,maker examine the variablility of the conditions of the fixed

facet. 'If the variability is small, the-scores can be Averaged over

conditons of the fixed facet. When the variability is large, however,

each condition should be treated separately or the scores should ,

should be treated as a profile. Whenever there is a question about

the magnitude of the variability, it may be most reasonable to present

the results for each condition separately as well as the average over

the conditions of the facet. This recommendation applies to the D

study as well as to the G study.

Variance componentS. Generalizability theory assumes that the

distributions underlying variance components are normal and that

'variance components cannot be negative. Analyses of non-normal

distributions of variance components by Scheffe (1959; see Cronbach et

al., 1972, p. 52) suggest that departures from normality can have e.

large effect on the "trustworthiness" of the confidence interval

around the variance component.

Negative estimates of variance components can arise as a result

of sampling variability or model misspecification. For example, a

random-effect model may not be valid (Nelder, 1954). Cronbach et al.

(1972) suggest that zero be substituted for negative estimates and

substituted in any expected mean square equation containing that

component. As Scheffe (1959) and others have pointed out, the zero
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estimates and modified estimates for other effects are biased. The

greater the number of facets in the design (particularly for crossed

designs), the greater the potential for a large number of biased

estimates of variance components.

The problem of negative estimates of variance components is not

insurmountable, however. Cronbach et ale.(1972) suggest the use of a

Bayesian approach, which not only provides a solution to the problem'

of negative estimates, but also provides estimates of variance

components that are interpretable with respect to the sample data, not

to repeated sampling. Fyans' (1977; see also Box & Tiao, 1973; Davis,

1974; Hill, 1965, 1967, 1970; Novick et al., 1971) strategy for

obtaining Bayesian estimates constrains the estimates to be greater

than or equal to zero. The resulting estimates are biased, however.

Limitations of the Procedures

The two major limitations of the procedures of generalizability

theory to be discussed here are the need for extensive data for

reliable estimates of variance components, and the difficulties of

estimation in unbalanced designs. It should be noted that these

limitations are not weaknesses in the theory but are difficulties

arising in practice.

Sampling variability of estimated variance components. Since

G-theory emphasizes the estimation and interpretation of variance

components, their sampling variability is of great importance, albeit

seldom addressed. Two issues arise: a comparison of sampling

variability of variance components for different effects in a design,
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and the magnitude of sampling errors in studies with moderate numbers

of observations.

Concerning.the first issue, a comparison of sampling variances

for different effects in a G-theory design suggests that the sampling

estimates of the universe score variance may be less stable than

estimat'es of Components of error varianee. This result derives from

an inspection of .gerieral formulas for sampling variances of estimated

variance components (see Smith, 1978). In fully crossed designs, at

least, the formulas for sampling variability of estimated variance

components for main effects contain more components,.and (for moderate

numbers of persons and conditions) can be expected to yield a larger

sampling variance estimate, than the formulas for higher-order

interaction effects. An illustration of this result for a two-facet,

crossed (p x i x j), random model design comes from Smith (1978,

Figure 1). The variance of the estimated variance component for

persons(the universe score variance) is

2
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In general, the sampling errors are expected to be greater for designs

with greater numbers of facets than for designs with few facets, thus

producing a trade-off between band width and fidelity.

The second issue concerns the magnitude of sampling errors of

estimated variance components. Monte carlo simulations conducted by

Smith (1978, 1980), Calkins et al. (1978), and Leone and Nelsori (1966)

for a variety of crossed and nested designs produced large sampling .

errors for small and moderate numbers of person§ and conditions.

Smith, for example, found that "(a) the sampling errors of variance

components are much greater for multifaceted univerSes than for single

-2
faceted universes; (b) for the sampling errors were large

, P

unless the total number of observations(npninj) was at least 800: (c)

stable estimates of a? and cr required at least eight levels of

each facet; and (d) some nested designs produced more stable estimates

than did crossed designs" (Shavelson & Webb, 1981, p. 141). Smith's

results pose a serious problem for the interpretation of results in

the moderately sized designs typically used. The requirements of

large numbers of conditions and large numbers of total observations

for stable estiRates of variance components are rarely met in most G

and D studies.

Woodward and Joe (1973) and Smith (1978) recommended that

measurements be allocated in the D study in specific ways to minimize

sampling variability. For example, inapxixjdesign, they

recommended using equal numbers of conditions of facets i and j when

2
a
res

increases relative to a2. and a , and making the
P1 PJ

numbers of conditions of facets i and j proportional to a;iarki

24i



7.23-

when a2
es

decreases relative to a2 and 1:72. . These decisions
r Pi PJ

are based on the results of the G stud .

To deal with the requirement of lar numbers of observations,

Smith (1980) also proposed the use of sever 1 small G studies with

many conditions of a few facets, each estimat g part of a complex G

study, instead of one large G study with a few ionditions of many

facets..- As Shavelson and Webb (1981). point out, however, there is a .

question of how' the restricted universes of the several small G

-studies represent the universe of the single, large G study.

.Unbalanced designs. A major difficulty with the ANOVA approach

to estimating variance components arises in unbalanced designs, in

which there are unequal numbers of observations in its subclassifica-

tions. An example which occurs in many tests is an unequal number of

items across subtests. Another example is students nested within

classes where class size varies. The primary difficulty with

unbalanced data is computational complexity. The usual rules for

deriving expected values of mean squares (Cornfield & Tukey, 1956) do

not apply to unbalanced designs. Although computer prigrams have been

developed to estimate variance components in unbalanced designs, they

require large storage capacities and, therefore, may be prohibitively

expensive in many cases. (For descriptions of the computer programs,

see Brennan et al., 1980; Llabre, 1978, 1980; Rao, 1971, 1972.)

Strengths and Weaknesses of the Model

The major strength of generalizability theory is its ability to

assess sources of error in the measurement and, consequently, to

design optimal decision-making studies. This ability affects not only

2
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a specific decision-maker's study but, as Cronbach et al. (1972, p.

384) point out, it can help evaluate existing testing practiCes:

Application of generalizability theory should operate'

ultimately to increase the accuracy of test

interpretations. It will make interpretation more cautious

as the inadequate generalizability of a procedure becomes

recognized, and it will encourage the development of

procedures more suitable for generalized interpretation.

The weak assumptions afford the decision-Maker great flexibility

in designing generalizability and decision studies, .and in defining

relevant universes of interest. At the same time, however, the lack

of assumptions leaves several questions unanswered. One is the lack

of guidelines about the reasonableness of data. For example, the

effects of outliers or influential observations on the estimates are

not well known.

Present Areas of Application

Reliability. As was described in the first section of this

paper, a primary goal of G-theory is to design measurement procedures

that minimize error variability, and thereby maximize reliability,

while at the same time allowing the decisidn7m'aker to generalize over

a broad range of testing situations. Generalizdbility theory has been

applied to a variety of' areas in the behavioral sciences to study the

dependability of measures of the behavior of schizophrenic patients

(e.g., Mariotto & Farrell, 1979), assertion in the elderly (Edinberg

et al., 1977), free-recall in children (Peng & Farr, 1976), depth and

duration of sleep (Coates et al., 1979), behavior of teachers (Erlich

2



& Shavelson, 1978), dentists' sensitivity toward patients (Gershen,

1976), educational.attainment (Cardinet et al., 1976), job

satisfaction using Spanish and English forms (Katerberg et al., 1977),

student ratings of instruction (Gillmore et al., 1978), and

heterosexual social anxiety (Farrell et al., 1979).

Linked conditions and multiv&Oiate estimation. Educational and

psychological measurements often provide multiple scores Which may be

interpreted as profiles (for examp)e, patterns Of'scores on the

Wechsler Intelligence Scale for Children are used to place students in

special education programs) or composites (for example, the

Comprehensive Test of Basic Skills). Although the most common

procedures used to assess reliability focus on the separate scores or

on the composite, neither method as sses the linkage or error

covariation among the multiple sc res. For example, subtest scores

from the same test battery are "linked" by virtid of occurring on the

same test form and on the same occa ion. Information about the

covariation among scores is importa t for designing an Otimal D

study, and permitting the dec on-maker to determine the composite

with maximum generalizability. For these purposes, a multivariate

analysis is more appropriate (see Cronbach et al., 1972; Shavelson &

Webb, 1981; Travers, 1969; Webb & Shavelson, 1981).

In extending G-theory's notion of multifaceted error variance to

multivariate designs, subtest scores, for example, would be treated

not as a facet of measurement but as a vector of outcome scores.

While univariate'G-theory focuses on variance components, multivariate

G-theory focuses on matrices of variance and covariance components.

24 4
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The matrix of variances and covariances among observed scores is

decomposed into matrices of components of variance and covariance.

The expected mean square and cross-product equations from a

multivariate analysis of variance are solved in analogous fashion to

their univariate counterparts. For example, the decompositio of the

variance-covariance matrix of observed scores in a one-facet, crossed

design with twb dependent variables (for example, the grammar and

paragraph comprehension subtests in a language arts battery) is:

a2( X .) a(
1
X
pi,2

X
pg

)

1 pi

a(Xpi,2Xpg) a2(2Xpg)

(observed scores)

-4

a2(1p) a(110,20

a(1p,2p) a2(213)

4ersons)

a2(1" a(1i,2g)

a(1i,2g) a2(2g)

(conditions)

a2(
1
pi,e)
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where
I
X
pf

= score on variable I for person p observed under

condition i,

2
X
pg

= score on variable 2 for person p observed under

condition g, and

I
P = abbreviated for 11113 : the universe.score on variable

I for person p.

In the above equation, the term a(0,2p) is the covariance between

universe scores on variables I and 2 (grammar and paragraph

comprehension). The term a(
1
i
'2
g) is the covariance between scores

"on the two variables due to the condition of observation. Facet i ,may

be the same as facet g, for example, when the grammar and paragraph

Comprehension scores are obtained from the same test form (on the same

occasion). The term 0-(1p1,e;2pg,e) is the covariance due to

un ystematic error.'

The matrices of variance and covari6nce components provide

essential information for deciding whether multiple scores in a

battery should be treated as a profile or a composite as opposed to

separate scores. The matrix of covariance components for universe

scores particularly shows whether it'is reasonable to consider the

scores as representing an underlying dimension, in which ease a

profile or a composite are reasonable. Small covariance componehts

relative to the variance components suggest that the scores are not

related and that a composite of the scores would not be interpretable.

Although the components of variance and covariance are of primary

importance and interest a decisfon-maker may find it useful to obtain
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the dimensions of scores (composites) with maximum generalizability.

The multivariate extension of the univariate generalizability

coefficient was developed by Joe and Woodward (1976). From a random

effects multivariate.analysis of variance, the canonical variates are

determined to maximize the ratio of universe-score variation to

univers-score plus error variation. For the two-facet fully crossed

design, Joe and Woodward's multivariate coefficient for relative

decision is

. p2

a'V a
--

6

a'V a +alV .a a'V a alV a+ pi_ pj_ +_ e_

nil nilnil

where V = a matrii Nariance and covariance

components estimated from mean square

matrices,

nj' and nil = the number of conditions of facets i and j

in a D study, and

a = the vector of canonical coefficients that

maximizes the ratio of between-person to

between-person plus within-person variance

component matrices.

There is a set of canOnical coefficients (as) for each characteristic

root in the above equation. Each set of canonical coefficients

defines a composite of scores. By definition, the first composite is
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the most reliable while the last composite is the least reliable.

This procedure', then produces the most generalizable composite of

subtest scores, or example, that takes into account the linkage among

the scores.

An application of multivariate generalizability theory to
...

_

arithmetic achievement (reported in Webb, Shavelson, & Maddahian,

1982) will be used as an illustration. Three subtests representing

basic'computational skills (addition/subtraction, multiplication, and

division) were selected from the mathematics battery at grade five

from the Beginning Teacher Evaluation Study (BTES), a research program

designed to identify effectie teaching behavior in elementary school

reading and mathematics. A sample of 127 students completed the three

mathematics subtests on two occasions. The design of the.,multivariate

study, then, had one facet (occasions) crossed with persons.

Table 3 presents the matrices of components of variance and

covariance for the three effects in the design: persons, occasions,

and the residual. The subtantial components of covariance for persons

(which is the universe-score component matrix) shows that the three

subtests are substantially related and that it is reasonable to form a

composite of the scores. The non-zero components of covariance for

the rqidual show that the tendency for students to be ranked ordered

differently across occasions (interaction between persons and

occasions) is consistent across subtests.

The dimensions of mathematical' skill that have maximum

generalizability are presented in Table 4. When the generalizability

of mathematics scores was estimated for a single occasion, one
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diMension with-generalizability coefficient exceeding .60 emerged from

the analysis. This dirfiension is a general composite heavily weighted

by division. The analysis with two occasions produced two dimensions

with generalizability coefficients exceeding .60. The first is the

general couosite described above; the second is, a c?ptfast_between_

addition/subtraction ,and division.

Table 3

Estimated Variance and Covariance Components for
Multivariate Generalizability Study of Basic Skills (n0=1)

Source of
Variation

Addition/Subtraction
(1)

Multiplication
(2)

Division

(3)

Persons (P) (1) 2.27
(2) 2.08 5.64

(3) 1.07 2.41 3.60

Occasions(0) (1) .00

(2) -.12 1.27

(3) -.04 .49 .17

PO,e (1) 2.34
(2) .84 5.84

(3) .00 .28 1.74
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Table 4

Canonical Variates for Multivariate
Generalizability Study of Basic Skills

n6 = 1 = 2

I II III I II III

--cryA-a-difiliffiSiTI5tTaTtliM ;11- -.--36- --.14--- .11 -w4-2.----;-42-

(21 Multiplication .07 -.11 .31 .07 -.13 .38

(3) Division .35 .28 -.12 .37 .33 -.15

Coefficient of
Generalizability (f32 ) '.71 .44 .33 .83 .61 .50

New Areas of Application

This section includes areas that have been developed but rarely

applied in practice, including test design and estimation of universe

scores and profiles, as well as areas that need to be developed,

including'estimation of.phenomena that change over time and the

effects of underlying score distributions on estimation and sampling

variability of estimators.

Test design. Generalizability theory can be used in designing

tests: for example, providing information on variability among

subtests, items within sdbtests, and item formats. Any of these

characteristics of tests can be used to define the universes of

admissible observatildns and generalization and can be included as

facets in G and D studies. Complexly structured tests can even be

considered, as in the case of unequal numbers of items for different

25



subtests in a test battery. A straightforward way to deal with this

case is to consider subtest as fixed, and to perform separate G

analyses (with items as a facet) for each subtest. Conditions of the

testing situation, as opposed to the test itself can also be taken

into account, such as occasion, examiner, and scorer.

--of-un-i-verse--sGores--and-profiles.-......k_contrib,ution

generalizability th ory is the estimation of point estimates of

universe scores and of score profiles. Cronbach et al. (1972, p. 103)

present an estimation equation (based on Kelley, 1947) for a point

estimate of the universe score which is shown to be more reliable than

observed scores:

p
= (42) xpI 4. (1_42) x

PI

Although thq procedure could be repeated for each subtest in a test

battery, t'hus producing a universe score profile, it would not take

full advantage of the relationships among the subtests.

Cronbach et al. (1972, p. 313-314) show how the correlations

among variables in a test battery can be taken into account to produce

a more dependable profile of universe scores. Basically, the

regression equation for a particular score in the profile includes not

only the observed scores on that variable (as in the above equation)

but also the observed scores for all other scores in the set. The set

of multiple regression equation equations produces a profile of

estimated universe scores for each person. This profile is more

reliable (and usually flatter) than that based on univariate
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regression equations. In an eXample using data from the Differential

Aptitude Tests (DAT), Cronbach et al. (1972) reported reductions in

error variance as large as 42 percent when all subtests were used as

predictors compared to error variances from single predictors. Such

universe score profiles are useful for guidance decisions and

diagnostic purposes. It is important to note further that the

regression methods outlined here may produce not only flattet profiles

than observed scores, but sometimes will invert relationships in an

observed-score profile. The important implication for counseling and

research is that observed profiles and those estimated from univariate

regrssions may be much further from the true profiles than

multivariate estimates.

Changing phenomena vs. steady state phenomena. All of the

discussion thus far has assumed that the phenomenon being studied

remains constant over observations. The problem is very complex,

however, when the universe score changes over time, as is the case

maturation studies (e.g., Bayley, 1968). This problem is particularly

acute in testing situations which assume no change in true ability or

knowledge across testing situations but in which sufficient time

elapses that true changes do appear. A further complication is that

the growth patterns of different individuals over time may not be

equivalent. A few inroads into this area are the work of Bryk (1980)

and'Maddahian (1982).

Underlying sccre distributions. The lack of knowledge about the

impact of varying underlying score distributions on the estimation and

sampling variability of univariate parameters, including universe
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score estimates, variance components, and generalizability

coefficients, and multivariate parameters, including universe score

profile estimation, components of covariance, multivariate

generalizability coefficients, and canonical coefficients, clearly

presents an area in need of development. Issues needing to be

addressed include bias and efficiency of the estimators.
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ANALYSIS OF READING COMPREHENSION DATA*

The data set used in this analysis is taken from the 1971 survey

of reading achievement in the United States carried out in conjunction

with the International Association for Educational Achievement's Study

of Reading Comprehension in 15 Countries (Thorndike, 1973). The total

sample consisted of 5,479 fourthlrade students drawn from a

probability sample of 239 schools scattered across the United States

(Wolf, 1977). Each of the selected students was asked to complete a

variety of tests and questionnaires designed to establish the relative

influence of various external factors to the development of reading

achievement and an interest in reading.

The international research program called for the administration

of essentially the same tests (though translated into different

languages) to comparable samples of students in each country. The

"between country" variation in background factors, school organiza-

tion, parental expectation and involvement, cultural importance of

written communication, etc., offered a unique opportunity to use the

natural laboratory to investigate their respective influences. It was

necessary in such a research study, however, to develop the me. -ure-

ment instruments with greit care. They not only had to be of high

psychometric quality, but also had to be capable of translation into a

range of languages so as to yield comparable, relevant, and fair

measures of achievement in all the participating countries. For this

* This chapter was compiled by David McArthur from contributions by

Bruce Choppin, David McArthur, Raymond Moy, and Noreen Webb.
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reason, the tests do not appear "familiar" in content or style to
1

those-regularly in use in any one country, but they were judged to be

accessible enough to the average student in each country to yield an

appropriately valid measure of achievement.

Two separate reading comprehension tests were administered. Each

consisted of short reading passages of between 100 and 200 words,

foltowed-try-a-group-of-multiple-choite-questions-the-answers-ta-wKich-.

could be found in the passage. The first section consisted of four

reading passages and a total of 21 items. The second section had five

reading passages and 24 items. Treated together for this analysis,

they yield a multiple-choice test of reading comprehension containing

45 items (these are listed in Appendix I).

In order to perform a fair comparison of the different

mathematical models for measuring achievement, it was decided to limit

the analysis to samples of 1,000 students drawn from the master set.

,4

As a back-up and to estimate the stability of the parameters obained,

some analyses were repeated on a second, non-overlapping, sample of

1,000 students. Four approaches were applied to the 45 items of the

Reading Comprehension Test for these samples of 1,000 cases: S-P

analysis, Rasch analysis, Generalizability analysis, & 3 parameter

latent trait analysis. Each is taken in turn below.

S-P Analysis

The S-P technique produced item p-values, person total scores,

caution indices for both items and persons, the pair of cu'rves (S &



- 8.3

P), the overall index of ordering and agreement with a perfect Guttman

scale, and rank positions for both items and persons.

Average difficulty is p=0.532 with a range of 0.864 to 0.167 (of

which the three,,most difficult items are answered correctly no better

an chance). D*, the indicator of hypothetical misfit, is 0.506, a

4fairly high value. The average caution index for items (cj*) is

0.250, ranging from 0.101 to 0.395. Eight of the items liave caution

indices exceeding 0.333.

In decreasing order of severity, these are items 16, 39, 31, 20,

43, 44, 7, and 42. The range of caution indices (Ci*) for respondents

is from 0.038 to 0.730, with only three persons achieving below 0.050

but twenty-seven achieving above 0.500. There is a strong negative

correlation (r= -0.45) between the item difficulties and their caution

indices. According to this solution, the test appears to contain a

moderate number of items poorly suited to this .sample. Many correct

responses are likely to be the result of chance guessing, and fully

onelfifth of the items are exceptionally poor at discriminating

between ability levels.

When those items with the highest caution indices are dropped

altogether from the S-P analysis, the entire matrix and all associated

indices for the items that remain and for all of the dents are

recalculated. While the truncated test on average is less dif icult,

there is little comparable decrease in the overdi index of mis it.

The number of respondents with elevated caution indices is exa tly

twice that of the first analysis, with the interesting finding that a

proportion of that increase is to be found in the top-scoring 10% of

26 ;
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the sample. It seems that when some items are removed because

evidence shows that responses to them are generally not in
1

correspondence with student ability, the S-P approach then penalizes

some of the upper-ability students. This occurs when'a student

manages to get most of the included items correct, and most of the

excluded items wrong, but also had one or two additional wrong

ansers. In the analysis of the full set of items, those last one. or

two wrong answers do not cause\the caution index to be all that out of

line, but in the truncated set, those wrong answers can contribute

heavily. For those students at the opposite end of the ability scale,

both the first and second analyses show a sizeable number of high

caution indices and very few low caution indices.

The low ability students are not measured well by this test,

according to the 5-P analYsis, and generally there is an unanticipated

large number of wrong answers by those whose overall ability level

would have led one to expect success. The same findings proved true

when the second sample of 1000 cases was analyzed, and also were

obtained when the two-sections comprising the 45 item test were

analyzed separately.

Rasch Model Analysis

Computations using the same data set made by a Rasch model item

analysis are as follows. For the complete set of445 items that make

Up the two tests, the range of item difficulty is 18 wits (or about 4
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logits). This a fairly is typical value for a classroom achievement

. test (Aich of course this was not!). The test was constructed to

meet the needs of an international project and was designed to be

effective in a broad spectrum of some 20 countries. As a result it

appears not to be matched exactly to this particular sample of

stuaents in the USA. Although the easiest item in the test would have

been "difficult" for fewer than one percent of the sample, the most

difficult item (number 31) would have appeared quite easy to about 25

percent. For this particular group of students, the test could

theoretically have been improved by the inclusion of one or two more

difficult items.

In general the fit to the Rasch model was quite good. The worst

fitting items were (in order of misfit) 16, 39, 43, 20, 31, 7, and

44. These are all comparatively difficult items. The analysis was

repeated eliminating these items (and item 32) and the overall fit

improved considerably. However, it should be stressed that only items

39 and 16 were sufficiently poor to the rejected by the usual Rasch

item analysis criteria for fit.

It would appear that the inclusion of more difficult items as

suggested ten lines above, would likely not have improved the test

overall because of misfit due to guessing. the anaiysis emphasizes

the seriousness of guessing on a four-way multiple-choice test.

There was a clear tendency for item discrimination to be related

to item difficulty. The easiest items on the test discriminated well

and the harder items comparatively poorly. All the misfitting items
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were among the poor discriminators. When the analysis was repeated

omitting the eight poorest fitting items, the trend linking

discrimination to difficulty remained; Even though the most difficult

items on this test are not really very difficult for most of the

sample of students, it would appear that guessing was very

widespread. This would account for the overall relationship between

difficulty and discrimination. An index of item discriginAtion

deduced from the measure of misfit to the Rasch model correlated

0.967 with Sato's Caution Index suggesting that these two are

measuring essentially the same thing (fit to a Guttman model).

To check the stability of the estimation of item difficulty the

analysis run on the first 1000 cases in the data set and reported

above was repeated on the second 1000. The results showed a high

degree of stability. The conventional p-values of the items on the

1

two separate samples of students correlated 0.982, while-the,delta

values resulting from the Rasch scaling analysis correlated 0.984.

Each of the two sections of the test was composed of four

clusters of items each relating to a short reading passage. These

clusters vary little among themselves in terms of item characteristics

although it may,be noted that the first passage in each section

(Tailor birds and Insects) are easier than those that follow them, and

the final cluster on the record section (Musk 0x) is somewhat less

discriminating than the average.
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A check was made to see if the items operated differently for

boys and girls. In general no major discrepancies were discovered

although a few differences in individual item difficulty did reach

significance. For example, items 7, 12, 24, 27, and 35 were

relatively easier for the girls while items 16, 32, 33, and 44 were

significantly easier for the boys. When the clusters were examined

further small, but significant, trends were noted. The passages about

"seals" and "the poet" were somewhat easier for the girls, while the

passage about "eskimos" slightly favored the boys.

Generalizability AnalySis

Generalizability analyses were performed to assess the magnitude

of the sources of variation in the data set. The sources of variation

include sex, persons, sections (first vs. second), passages (coded E

in the tables), and items. The variation for persons is considered

here to be the universe score variance (true score variance). All' of

the other sources of variation are considered error. For all fthe

analyses except that which includes sex, five items were selected at

random from each passage to make a balanced design. For the analysis

of sex, an equal number:of boys an girls was selected.

Four designs of the basic data set were analyzed:

(1) Persons x Sections x Passages (Sections) x Items

(Passages(Sections))

(2) Persons x Sections x Passages x Items (Passages)



(This design assumes that the same passages appeared in both

sections and is probably not defensible. It was included to help

disentangle the passage x section interaction in design (1).)

(3) Persons x Sections x Items (Sections)

(This design ignores passage as a source of variation.)

(4) Persons x Sections x Items

(This design assumes that each section has the same items

and is probably not defensible. It was included to help disentangle

the item x section interaction in the above design.)

An additional design was included to assess the effects of sex:

(5) Sex x Persons(Sex) x Sections x Passage(Sections) x

Items(Passages(Sections)).

(This analysis is essentially the same design (1) with the

additional stratification by sex.)

Table 1 gives the variance craponents for the five designs.

These variance components are estimates for one section, one essay,

and one item. The variance component for sections is zero, indicating

that students performed equally well on both sections of the test.

The persons x sections (PS) interaction is also lowl, indicating that
1

students are ranked equally on both sections of the test.

In two sections, passages and items have nontrivial variatiOn,

even if low. Some passages are easier than other passages and some

items are easier than other items. The variance components relating

to items are the highest. Further, there is some tendency for items
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to rank students differently. To the extent that the section x item

interaction can be interpreted, the position of item difficulties

within one sect:on does not correspond to the other section. In other

words, while the early items in the first section may be the easiest

in that section, the early items in the second section may not be the

easiest items in that section.

The large residual component in all designs suggests that there

may be other sources of variation in test scores that have not been

accounted for in the above designs.

Table 2 gives th'e generalizability coefficients for a variety of

decision study designs. The coefficients were computed for absolute

decisions: taking into account the absolute level of performance as

well as relative rankings among students. All sources of variation

other than that for persons, therefore, contribute to error. These G

coefficients are considerably lower than those for relative decisions

which include only the sources of variation interacting with persons

(e.g., PS, PE(S), etc.).

The G coefficients for designs (1) and (2) are similar, as are

those for designs (3) and (4). Increasing the number of items within

each essay beyond 3 or 4 items has little impact on reliability,

particularly, particularly when there are several passages in a

section. Further, the total number of items seems to have the most

impact of reliability; it does not matter how they are distributed
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Table 1

PxSxE(S)xI(E(S))

Variance Components from Generalizbility Analyses

1

PxSxCxI(E)) P S x I(S) PxSxI

Source 2 Source 2 Sourc 2 Source 2

P .031 12.4 P .031 12.4 P .031 12.4 P .031 12.4

S .000 0.0 S .000 0.0 S .000 0.0 S .000 0.0

E(S) .006 2.4 E .005 2.0

I(SE) .022 8.8 I(E) .007 2.8 I(S) .027 10.8 I .011 4.4

PS .000 0.0 PS .000 0.0 PS .001 0.4 PS .001 0.4

PE(S) .005 2.0 PE .000 0.0

SE .001 .4

PI(E) .004 1.6 PI .005 2.0

SI(E) .015 6.0 SI .016 6.4

PSE .005 2.0

PI(SE),e .187 74.5 PSI(E),e .182 72.8 PI(S),e .191 76.4 PSI .186 74.4

X x P(X) x S x E(S) x I(E(S))

Source 2

X .000 0.0

S .000 0.0 P = Persons

P(X) .031 12.4 X = Sex

E(S) .007 2.8 S = Section (First Ns. Second)

XS .000 0.0 E = Passage
)

f(SE) .022 8.8 I = Item

PS(X) .000 0.0
1

i

XE(S) ,.000 0.0

PE(XS) .005 2.0

X1(SE) .000 0.0

PI(XSE),e .186 74.4 /

/

/

/



PxSxE(S)xI(ES)

No. Of Sections = 1

# of Passages 2

# of Items

Table 2

Generalizability Coefficients for Absolute Decisions

3 4

PxSxExI(E)

No. Of Sections = 1

# of Passages 2

# of Items

4

2 .34827 .44488 .51653 2 .34496 .44056 .51142

3 .43304 .53389 .60425 3 .42885 .52960 .59816

4 .49306 .59324 .66032 4 .44821 .58728 .65359

5 .53777 .63563 .69926 5 .53243 .62918 .69206

No. Of Sections = 2

# of Passages 2

# of ItEms

3 4

NJ. Of Sections = 2

of Passages 2

# -of Items

3 4

2 .51661 .61580 .68120 2 .49016 .58983 .65659

3 , .60437 .69613 .75331 3 .57439 .66848 .72811

4 .66046 .74469 .79541 4 .62839 .66848 .72811

5 .69941 .77723 .82301 .66595 .74829 .79761

Px5xI(S) PxSxI

No. Of Sections = 1
No. Of Sections = 1

# of Passages 2 4 # of Passages 2 3 4

# of Items
# of Items

2 .35798 .45310 .52251 .35393 .44750 .51567

3 .45310 .55063 .61704 3 .44750 .54325 .60833

4 .52251 .61704 .67841 4 .51567 .60833 .66838

5 .57540 .66518 .72146 5 .56754 .65544 .71046

No. Of Sections = 2

# of Passages 2

# of Items

3 4

No. Of Sections = 2

# of Passages 2

# of Items

3 4

2 .52723 .62363 .68638 2 .50586 .60239 .66592

3 .62363 .71020 .76317 3 .60239 .69019 .74444

4 .68638 :76317 .80839 4 .66599 .74444 .79107

5 .73048 .79892 .83819 5 .71091 .78128 .82197
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across passages. For example, four passages with two items each has

--Nabojut the same reliability as two passages with four items each. The

t
same result holds for sections; it does not matter how items are

distributed across sections. For example, in design (1), one section

with four passages with two items each has a G coefficient of .52; one

section with,two passages with four items each has a G coefficient of

.52. All of the above combinations have eight items total. Similar

combinations with a total of 16 items have G coefficient ranging from

.66 to .68.

The final analysis 'examined sex as a source of variation. The

component for sex was zero, indicating that boys and girls showed

equal mean performance. Furthermore, the inclusion of sex did not

affect any other compnent. In other words, items, passages and

t,.... sections ranked boys and girls similarly. This finding seems to

conflict somewhat with the finding in the Rasch analysis that some

items ranked boys and girls differently.

Three-Parameter Latent Trait Analysis

With the introduction of an improved version of the LOGIST

%ter program for estimating the parameters in latent trait models,

its se for examining test behavior is likely to become more

widesp, ?ad. However, a problem remains in the evaluation of the

results, as the parameters derived by the program are likely to be

unstable. The problem is to identify the sources of instability and

to assess their relative effects on the parameter estimates. The
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three sources of instability are:

1) Non-unidimensionality of the item responses,

2) Mis-snecification of the item response model, and

3) Inadequacies of the estimation procedures.

Of these three sources, non-unidimensionality has the most serious

impact for test users. Under tilis circumstance, items cannot be

characterized as having uniquely identified parameters and examinee

abilities estimated from any derived item parameters are left

undefined as well. As an end result, one might be in no better

position than if original raw number correct scores is used. In fact,

one's position could be worse, in fact, if the test user were to act

as if the ability estimates were item-free and sample-free.

If the sources of instability are due to model mis-specification

or estimation inadequacies, and not,due to non-unidimensionality, then

one can speak of true values for both item and ability parameters

which are only being inaccurately estimated. In this case, increased

stability may be obtained through relatively straightforward fixes,

such as going from a one-parameter model to a three-parameter, or

increasing sample sizes. However, more complicated solutions may be

needed, such as the development of a new model with different types of

parameters.

Without the presence of external criteria it is difficult to

separate out the various sources of instability; however, it is

possible to gather circumstantial evidence that may enable one to

deduce their relative effects. Under ideal circumstances, both item



and examinee parameters should be estimable and stable regardless of

the item and the examinees used in the estimation procedure.

Therefore, one would expect that item parameters estimated from two

separate runs on independent samples of examinees should correlate

very highly with one another. Likewise examinee abilities estimated

for independent subsets of items but calibrated to the same latent

trait scale should also correlate very highly with one another. If

these high correlations are maintained across nonrandom samples of

items and examinees, one can place considerably more confidence in the

parameter estimate.

With the Reading Comprehension Test data, the stability of item

parameter estimates was investigated across independent random samples

,
using different sample sizes in item sets. Table 3 contains the

correlations for each of the three item parameters using different

sample sizes. The correlations are between the item parameter

estimates as they were derived from separate random samples of

examinees. Thus for the 45-item Reading Comprehension Test, the

Logist program produced 45 difficulty parameters for a sample of 1,000

examinees. Another Logist run was made with another sample of 1,000

examinees, and again it produced 45 difficulty parameters. The

correlation between these two'sets of difficulty parameters appears in

Table 3 in the row labeled b. Similarly, correlations were ppoduced

for the discrimination and guessing parameters a and c.



Table 3

Stability Correlation of Item Parameter
Based on Sample Sizes of 1,000 and 500

N = 1,000 N = 500

.72 .70

.97 .95

.64 .35

Table /

Stability Correlation of Item Parameter for
Odd and Even Item Sets Based on Sample Sizes of 1,000

Odd Item (N = 23) Even Items (N = 22)

a .62 .68

b .97 .96

c .35 .82

Table 5

Stability Correlation of Item Parameter for
Guessable and Non-Guessable Item Sets Based on

Sample Sizes of 1,000

a

Guessable (N = 14) Non-Guessable (N = 24)

.93 .38

.97 .91

.82 .25
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The difffcftl- parameter has the highest correlation (.9699),

diserimination is next highest (.7225), and the guessing parameter is

lowest (.6448). In order to investigate the effect of sample sizes on

the stability of estimates similar correlations were produced with

sample sizes of 500. Both a and b parameters maintained the same

magnitudes (.9546 and .7027 respectively), but the correlation for the

guessing parameter drops considerably (to .3502). This suggests the

importance of sample size in the estimation of the c parameter;---

however, the discrimination parameter correlations of -72 and .70 also

indicate room for improvement.

Besides the effect of examinee sample sizes, the number of items

being estimated may also have an effect on the stability of the

estimation procedures. Because Logist utilizes maximum likelihood

estimate procedures, the estimates are likely to be biased, eSpecially

when the total number of examinees by items observations are limited

(Andersen, 1973). Table 4 illustrates the effect of reducing the

number of items by)ialf. Using sample sizes of 1,000, the

correlations were calculated for odd items and again for even items.

The stability Of the difficulty parameters remains high (.97 and .96

for the odd and even item sets respectively), but the stability of the

discrimination parameters drops. Surprisingly, however, the c

parameter stability goes up considerably for the even items but falls

for the odd items. This appears to suggest that the stability of the

item parameters independent of sample sizes has a lot to do with the
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types of iteMs included in the analysis. In other words, the

unidimensionality of the items in the Reading Comprehension Test is

questionable.

Pursuing this line of reasoning, it was felt that the 45 items

could be classified in some way to produce more homogeneous item

sets. Because the influence of guessing has received quite a lot of

attention in the application of the three-parameter model, one method

of classifying the items is on the basis of their guessability, that

is, the likelihood of getting an item correct without possessing the

requisite knowledg. In order to classify the item as guessable, the

45 reading items without their corresponding reading passages were

presented to eight adult college-educated subjects. Guessable items

were judged to be those for which seven of the eight subjects were

able to answer correctly without having read thepassages, while

non-guessable items were those which two or fewer subjects were able

to get correct.

In all, 14 items were classified as guessable, and 24 were

classified as non-guessable. The resulting item correlations from the

IEA exc-iinees are based on sample sizes of 1,000 and are presented in

Table 5. The stability of parameter estimates goes up for all three

parameters for the guessable items and goes down for the non-guessable

items. The stability correlations for the discrimination parameter

goes up considerably for the guessable items (to a respectable .93),

and the correlation for the c parameter also goes up (to .82). For
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the aon-guessable items, the a and c parameters go down (to .38 and

.25, respectively) which seem to indicate that the non-guessable items

are non-unidimensional and that the non-unidimensionality is

responsible for most of the instability of the item estimates.

The strategy used in the preceding three-parameter analysis was

principally one of deduction from available correlational evidence

without the use of external validating criteria. The general

conclusion for the Reading Comprehension Test data is that the 45

items are not unidimensional and that such non-unidimensionality

considerably affects the stability of Logist estimates. It should be

noted, in particular, that this non-unidimensionality would not have

been detected through the estimation of difficulty parameters alone as

would be produced by the Rasch analysis.

The results of the three-parameter study also seemed to provide

some evidence for the nature of the reading test behavior of the set

of examinees. It seems that much of what is called reading ability

depends on what the student brings to the reading situation, fee., his

or her own experiences with and exposure to particular topics. This

may underly the higher stability of-the parameter estimates for the

guessable items as contrasted with the non-guessable items. The

non-unidimensionality of the latter should not be too surprising since

examinees, presumably, must read the passages before they select an

answer, and their subsequentability to respond correctly to the item

is probably a function of several of reading compmrehension and

-test-taking b.:rategies.
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SUMMARY PAPER

J. Ward Keesling

I. Introduction: What should a measurement model provide?

A. An assessment of the fit of the model

B. Parameter estimates that capture information of importance

about the elements of the model (e.g., person and item

characteristics)

1. The estimated parameters for persons are the "measurements"

in the model

2 The estimated parameters characterizing items should

provide insight about the items (e.g., their difficulty

levels) and permit more sophisticated construction and

interpretation of tests

3 The special case of the multiple-choice item. The need

for parameters to characterize distractors.

C. Estimates of the precision of the parameter estimates--to help

us understand the latter statistic:.

D. Overview of the chapter

II. Evaluation of the models given the above criteria

A. Logistic models

B. S-P model

C. G-Theory (is this really a measurement model?)

D. AUC models



- 9.2-

III. An examination of the salience of the models to three types

of use

A. Assessing pupil progress in a classroom

B. The norm-referenced evaluation

C. The domain-referenced evaluation

(For each, discuss the utility of the information in

the various models, vs the cost of obtaining it.

Attend especially to the patential of item banks.)

IV. :Implications of microcomputer technology

(Review III, with a view to how technology could help/hinder)

V. Summary

2",.


